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The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• ArithmeticArithmetic

• Datatypes
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Motivation
Current stage of our course:

• On the basis of conservative embeddings, set theory can

be built safely.

• Inductive sets can be defined using least fixpoints and

suitably supported by Isabelle.

• Well-founded orderings can be defined without referring to

infinity. Recursive functions can be based on these. Needs

inductive sets though. Support by Isabelle provided.

Next important topic: arithmetic.
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Which Approach to Take?
• Purely definitional?

Not possible with eight basic rules (cannot enforce infinity

of HOL model)!

• Heavily axiomatic? I.e., we state natural numbers by

Peano axioms and claim analogous axioms for any other

number type?

Insecure!

• Minimally axiomatic? We construct an infinite set, and

define numbers etc. as inductive subset?

Yes. Finally use infinity axiom.
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What is Infinity? Cantor’s Hotel

Cantor’s hotel has infinitely many guests in his rooms if the

receptionist can do the following procedure: A new guest

arrives. The receptionist tells all guests to move one room.

They move one room forward, the new guest takes the first

room, and all are home and dry !
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Axiom of Infinity
The axiomatic core of numbers:

axioms infinity : ”∃ f :: ind ⇒ ind . inj f ∧ ¬ surj f”

where injective and surjective are:

inj f ≡ ∀ x. ∀ y. f(x)=f(y) → x=y

surj f ≡ ∀ y. ∃ x. y=f(x)

The axiom forces ind to be the “infinite type” (called “I” in

[Chu40]).
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Natural Numbers: Nat.thy

Based on the axiom of inifinity, a proto-Zero and a

proto-Suc can be introduced by type specification:

consts
ZERO :: ind

SUC :: ind ⇒ ind

specification (SUC)

SUC charn: inj SUC ∧¬ surj SUC

by ( rule infinity )

specification (ZERO)

ZERO charn: ZERO 6=SUC X

by ( insert SUC charn, auto simp: surj def )
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The proofs show that witnesses satisfy the required

properties of the constants.
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Defining the Set Nat
Now we define inductively a set generated by ZERO and

SUC:

consts NAT :: ind set

inductive NAT

intros
ZERO I: ZERO∈NAT

SUC I : [[ x∈NAT ]]=⇒SUC x∈NAT

(Recall that Isabelle converts this in:

Nat = lfp (λX.{Zero Rep} ∪ (Suc Rep ‘X))
and derives an induction scheme)
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Defining the Type nat
The inductive set Nat is now abstracted via type definition

to the type nat:

typedef (Nat)

nat = ”Nat” by (...)
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Constants in nat
Moreover, we define 0 and Suc via their corresponding values

in Nat :

consts
Suc :: nat ⇒ nat

pred nat :: (nat ×nat) set

defs
Zero nat def : 0 ≡Abs Nat Zero Rep

Suc def: Suc ≡(λn. Abs Nat (Suc Rep (Rep Nat n)))

pred nat def : pred nat ≡{(m, n). n = Suc m}
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Some Theorems in Nat
From the induction inherited from Nat, we derive:

nat induct [[ P 0;
∧

n.P n =⇒P (Suc n) ]] =⇒P n

diff induct [[
∧

x. P x 0;
∧

y. P 0 (Suc y);∧
x y.P x y =⇒P (Suc x)(Suc y)]]

=⇒P m n

Moreover, we have as pre-requisite for wf-induction:

wf(pred nat)

These are the main weapons for proving theorems in basic

number theory.
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Nat.thy and Well-Founded Orders
Definition of orders:

m < n ≡(m, n) ∈pred natˆ+

m ≤(n ::nat) ≡ ¬ (n < m)

have the properties:

m ≤m

[[ x≤y; y≤z ]] =⇒ x≤z

[[ x≤y; y≤x ]] =⇒ x=y

x<y ∨y<x ∨x=y
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Using Primitive Recursion
Nat.thy defines rich theory on nat. Uses primrec syntax for

defining recursive functions, and case construct.

primrec
add 0 0 + n = n

add Suc Suc m + n = Suc(m + n)

primrec
diff 0 m − 0 = m

diff Suc m − Suc n = (case m − n of 0 => 0 | Suc k => k)

primrec
mult 0 0 ∗ n = 0

mult Suc Suc m ∗ n = n + (m ∗ n)
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Some Theorems in Nat.thy
add 0 right m + 0 = m

add ac m + n + k = m + (n + k)

m + n = n + m

x + (y + z) = y + (x + z)

mult ac m ∗ n ∗ k = m ∗ (n ∗ k)

m ∗ n = n ∗ m

x ∗ (y ∗ z) = y ∗ (x ∗ z)

Note third part of add ac, mult ac, respectively.

Technically, add ac and mult ac are lists of thm’s.
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Proof of add 0 right

add 0
0 + 0 = 0

add suc

Suc m + n = Suc(m + n)

Suc(m + n) = Suc m + n
sym

[n + 0 = n]1

Suc(n + 0) = Suc n
fun cong

Suc n + 0 = Suc n
subst

m + 0 = m
add 0 rightnat induct1
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Integers

The integers ...,−2,−1, 0, 1, 2, ... are identified with

equivalence classes over nat ×nat (thought as “differences”

0− 1,1− 2,3− 4,...).
IntDef = Equiv + NatArith +

constdefs
intrel :: ((nat×nat) ×(nat ×nat)) set

intrel ≡{p. ∃ x1 y1 x2 y2.

p=((x1::nat,y1),(x2,y2)) ∧
x1+y2 = x2+y1}

typedef (Integ)

int = UNIV//intrel (...)
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Injections of nat’s into integers, negation, addition,

multiplication were now defined in terms of “differences”:

int :: nat => int

int m ≡Abs Integ( intrel “ {(m,0)})

minus int def :

− z ≡Abs Integ (
⋃

(x,y)∈Rep Integ z. intrel “{(y,x)})

add int def :

z + w ≡ ...

add int def : z ∗ w ≡ ...
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Note that we use overloading here!!!
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Some Theorems in IntArith
Some theorems on integers are:

zminus zadd distrib − (z + w) = − z + − w

zminus zminus − (− z) = z

zadd ac z1 + z2 + z3 = z1 + (z2 + z3)

z + w = w + z

x + (y + z) = y + (x + z)

zmult ac z1 ∗ z2 ∗ z3 = z1 ∗ (z2 ∗ z3)

z ∗ w = w ∗ z

z1 ∗ (z2 ∗ z3) = z2 ∗ (z1 ∗ z3)

Compare to nat theorems.
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Further Number Theories

• Binary Integers (Bin.thy, for fast computation)

• Rational Numbers (HOL-Complex/Rational.thy)

• Real Numbers (HOL-Complex/Real.thy: based on

Dedekind-sections of positive rationals.

• Hyperreals (HOL-Complex/Hyperreal.thy for non-standard

analysis)

• Machine numbers such as JavaIntegers [RW04] and

floats [Har98, Har00] for Intel’s PentiumIV
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Conclusion on Arithmetic

Using conservative extensions in HOL, we can build

• the naturals (as type definition based on ind), and

• higher number theories (via equivalence construction).

Potential for

• analysis of processor arithmetic units, and

• function analysis in HOL (combination with computer

algebra systems such as Mathematica).

Future: Analysis of hybrid systems.

The methodological overhead of the conservative method

can be tackled by powerful mechanical support.
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More Detailed Explanations
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The Peano Axioms
The Peano axioms are:

• 0 ∈ nat

• ∀x.x ∈ nat → Suc(x) ∈ nat

• ∀x.Suc(x) 6= 0

• ∀xy.Suc(x) = Suc(y) → x = y

• ∀P.(P (0) ∧ ∀n.(P (n) → P (Suc(n)))) → ∀n.P (n)
The latter formula is not an axiom in first-order logic, it is traditionally

described as “axiom schema”.

However, it fit’s smoothely into HOL.
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The case Statement for nat
The case statement for nat is a function of type

nat ⇒ nat ⇒ nat) ⇒ nat ⇒ nat. case z f n is defined as follows

(using a common mathematical notation):

case z f n =
{

z if n = 0
f k if n = Suc k

An ML-like pattern match construct in:

diff Suc ”m − Suc n = (case m − n of 0 => 0 | Suc k => k)”

uses a paraphrasing for case 0 (λ x.x) (n−m).
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Left Commutation
The theorems x + (y + z) = y + (x + z) and x ∗ (y ∗ z) = y ∗ (x ∗ z) are

called left-commutation laws and are crucial for (ordered) rewriting.

Suppose we have the term shown below. Using associativity

(m + n + k = m + (n + k)) this will be rewritten to the second term.

Using left-commutation, this will be rewritten to the third term. This is

a so-called AC-normal form, for an appropriately chosen term ordering.
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Equivalence Classes
Recall the general concept of an equivalence relation. Generally, for a set

S and an equivalence relation R defined on the set, one can define

S//R, the quotient of S w.r.t. R.

S//R = {A | A ⊆ S ∧ ∀x, y ∈ A.(x, y) ∈ R}

That is, one partitions the set S into subsets such that each subset

collects equivalent elements. This is a mathematical standard concept.

We explain it for integers in more detail. One can view a pair (n, m) of

natural numbers as representation of the integer n−m. But then (n, m)
and (n′,m′) represent the same integer if and only if n−m = n′ −m′,

or equivalently, n + m′ = n′ + m. In this case (n, m) and (n′,m′) are

said to be equivalent. The set of equivalent elements is an equivalence

class. The quotient maps therefore a set to a set of equivalence classes.
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Reals According to Dedekind
The reals have been axiomatized by Dedekind by stating that a set R is

partitioned into two sets A and B such that R = A∪B and for all a ∈ A

and b ∈ B, we have a < b. Now there is a number s such that a ≤ s ≤ b

for all a ∈ A and b ∈ B. The irrational numbers are characterised by the

fact that there exists exactly one such s. This axiomatization has been

used as a basis for formalizing real numbers in Isabelle/HOL.
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Hyperreals
In non-standard analysis, one works with sequences that are not

necessarily converging. This is a relatively new field in mathematics and

Isabelle/HOL has been successfully applied in it [FP98]. We just mention

this here to say that Isabelle/HOL is used for “cutting-edge”

mathematics and not just toy examples.
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Hybrid Systems

Hybrid systems is a field in software engineering concerned with using

finite automata for controlling physical systems such as ABS in cars etc.
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