
Computer Supported Modeling and
Reasoning

David Basin, Achim D. Brucker, Jan-Georg Smaus, and

Burkhart Wolff

April 2005
http://www.infsec.ethz.ch/education/permanent/csmr/

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Logic: Datatypes

Burkhart Wolff

Higher-Order Logic: Datatypes 932

The Roadmap
We are still looking at how the different parts of

mathematics are encoded in the Isabelle/HOL library.

• Orders

• Sets

• Functions

• (Least) fixpoints and induction

• (Well-founded) recursion

• Arithmetic

• DatatypesDatatypes

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Higher-Order Logic: Datatypes 933

Datatypes: Motivation
Last lecture: Construction of natural numbers.

How can we build “datatypes” as conservative extension?

Can we generalize the natural number construction to

arbitrary datatypes?

• Well, yes — by Gödelization . . .

• . . . and by an S-expressions-like tree data structure and

inductive definitions.

Caveat: We will simplify! See Datatype Universe.thy

and [Wen99] for Details.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://isabelle.in.tum.de/library/HOL/Datatype_Universe.html
http://www.infsec.ethz.ch/education/permanent/csmr/

S-Expressions 934

S-Expressions

Idea: We build an “ancestor”-datatype of binary trees

α dtree (LISP-like S-expressions).

This is encoded as a set of “nodes” (defined by their path

from the root and a value in the leaves), e.g.:

{(〈0, 0〉, a), (〈0, 1〉, b), (〈1〉, c)}

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

S-Expressions 935

Building Trees
• Atom(n)

• Scons X Y

=

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

S-Expressions 936

Tagging Trees
We want to tag an S-expression by either 0 or 1. This can

be done by “Scons”-ing it with an S-expression consisting of

an administration label. By convention, the tag is to the left.

• In0 def In0(X) ≡ Scons Atom(Inr(0))(X)

• In1 def In1(X) ≡ Scons Atom(Inr(1))(X)

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

S-Expressions 937

Products and Sums on Sets of S-Expressions
Product of two sets A and B of S-expressions: All

Scons-trees where left subtree from A, right subtree from B.

uprod def uprod A B ≡
⋃
x∈A

⋃
y∈B

{(Scons x y)}

Sum of two sets A and B of S-expressions: union of A and

B after S-expressions in A have been tagged 0 and

S-expressions in B have been tagged 1, so that one can tell

where they come from.

usum def usum A B ≡ In0 ‘A ∪ In1 ‘B

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

S-Expressions 938

Some Properties of Trees and Tree Sets
• Atom, In0, In1, Scons are injective.

• Atom and Scons are pairwise distinct. In0 are In1
pairwise distinct.

• Tree sets represent a universe that is closed under products

and sums: usum, uprod have type

[(α dtree) set , (α dtree) set] ⇒ (α dtree) set .
• uprod and usum are monotone.

• Tree sets represent a universe that is closed under products

and sums combined with arbitrary applications of lfp.

Reminder: we simplified!

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Lists in Isabelle 939

Lists in Isabelle

Now we define inductively a subset of S-expressions having

the “structure of lists”. As a pre-requisite, we define “raw

constructors”:

constdefs
NIL :: ’a dtree

”NIL ≡In0(Atom(Inr(0)))”

CONS :: [’ a dtree , ’a dtree] ⇒ ’a dtree

”CONS M N ≡In1(Scons M N)”

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Lists in Isabelle 940

Lists as S-Expressions: Intuition
Examples of how lists would be represented as S-expressions:

Nil []
In0 (Atom(Inr(0)))

Cons(7,Nil) [7]
CONS (Atom(Inl 7)) In0 (Atom(Inr(0)))

Cons(5,Cons(7,Nil)) [5, 7]
CONS (Atom(Inl 5))

(CONS (Atom(Inl 7)) In0 (Atom(Inr(0))))
Now let’s construct the S-expressions having this form.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Lists in Isabelle 941

Lists as S-Expressions: Inductive Construction
Based on the “raw constructors”, we define the inductive set

of S-expressions:

list :: ”’a dtree set ⇒ ’a dtree set”

inductive ” list (A)”

intrs

NIL I NIL ∈ list (A)

CONS I [[a ∈ A; M ∈ list (A)]]
=⇒CONS a M ∈list(A)”

See src/HOL/Induct/SList.thy in the Isabelle

distribution for details!

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Lists in Isabelle 942

Defining the “Real” List Type
We apply a type definition in order to define the type list

by the inductive subset list (A).

typedef (List)

’a list =

” list (range (Atom o Inl)) :: ’a dtree set”

by ...

Choosing A as range (Atom ◦ Inl) together with the explicit

type declaration forces A to be the set containing all

Atom (Inl t), for each t :: α.

This is an example of a definition of a polymorphic type.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Lists in Isabelle 943

List Constructors
We define the real constructor names for lists:

Nil def ”Nil ::’ a list ≡ Abs list (NIL)”

Cons def ”x#(xs::’a list) ≡
Abs list (CONS (Atom(Inl(x))) (Rep list xs))”

. . . derive the induction scheme and forget about NIL and

CONS .

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Lists in Isabelle 944

Summary

Similar to primitive recursion, compilers for datatype

definitions can be provided that preform a conservative

construction behind the scene

datatype ’a list = Nil | Cons ’a (’a list)

In particular, this automates the proofs of:

• the induction theorem;

• distinctness;

• injectivity of constructors.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

Lists in Isabelle 945

This also works for mutually and indirectly recursive

datatype definitions.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 946

More Detailed Explanations

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 947

Gödelization
In computation theory, Gödelization is the process of encoding data

structures (words, trees, . . .) into natural numbers.

Assume that we want to encode “binary tree’s” over natural numbers.

These tree’s could be defined as solutions of the following set equation:

S(Nat) = Nat + (S(Nat)× S(Nat))

or by the corresponding free data type:

datatype S = Atom nat

| Node [S, S] => S

This notation implies that

1. Atom and Node produce distinct values,

2. Atom and Node are injective

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 948

3. all values in S are inductively generated over Atom and Node.

Can we have a model satisfying these requirements so far?

The answer is yes: Consider Atom x = 2x and Node x y = 3x ∗ 5y.

Distinctness holds obviously, and due to uniqueness of prime number

factorization, both functions are injective. Building an inductive subset

of nat generated by Atom and Node will also give the induction principle.

Unfortunately, the construction is not polymorphic as the presented

S-expression-construction.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 949

S-Expressions Explained
The datastructure we have in mind here consists of binary trees where

the inner nodes are not labeled, and the leaves are labeled

• either with a term of arbitrary type, in which case the leaf would be an

actual “piece of content” in the datastructure,

• or with a natural number, in which case the leaf serves special

purposes for organizing our datastructure, as we will see later.

I.e., such binary trees have a type parametrized by a type variable α, the

type of the latter kind of leaves. Let us call the type of such trees

α dtree.

As always with parametric polymorphism, when we consider how the

datastructure as such works, we are not interested in what the values in

the former kind of leaves are. This is just like the type and values of list

elements are irrelevant for concatenating two lists. Of course, α could,

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 950

by coincidence, be instantiated to type nat.

Think of a label of the first kind as content label and a label of the

second kind as administration label.

Technically, if something is either of this type or of that type, we are

talking about a sum type. So a leaf label has type α + nat (written

(α, nat) sum before), and it has the form either Inl(a) for some a :: α,

or Inr(n) for some n :: nat.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 951

Path Sets Explained

The set

{(〈0, 0〉, a), (〈0, 1〉, b), (〈1〉, c)}

represents the tree

The path 〈0, 0〉 means: from the root take left subtree, then again left

subtree. The path 〈1〉 means: take right subtree.

How can a path 〈p0, . . . , pn〉 be represented? One idea is to use the

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 952

function f :: nat⇒ nat defined by

f i =
{

pi if i ≤ n

2 otherwise

as representation of 〈p0, . . . , pn〉.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 953

Atom
Atom takes a leaf label and turns it into a (simplest possible)

S-expression (tree).

So it has type α + nat ⇒ α dtree.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 954

Scons
Scons takes two S-expressions and creates a new S-expression as

illustrated below:

=
So it has type [α dtree, α dtree] ⇒ α dtree.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 955

In0 ‘ . . ., In1 ‘ . . .
Recall that ‘ denotes the image of a function applied to a set.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 956

Injective and Pairwise Distinct Functions
This means that any of Atom, In0 , In1 , Scons applied to different

S-expressions will return different S-expressions.

Moreover, a term with root Scons is definitely different from a term with

root Atom, and a term with root In0 is definitely different from a term

with root In1 .

Why is this important? It is an inherent characteristic of a datatype. A

datatype consists of terms constructed using term constructors and is

uinquely defined by what it is syntactically (one also says that terms are

generated freely using the constructors). For example, injectivity of Suc
and pairwise-distinctness of 0 and Suc mean for any two numbers m and

n, the terms Suc(. . .Suc︸ ︷︷ ︸
m times

(0) . . .) and Suc(. . .Suc︸ ︷︷ ︸
n times

(0) . . .) are different.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 957

Computing the Closure
Given a set T of trees (S-expressions), the closure of T under Atom, In0,
In1, Scons, usum, uprod is the smallest set T ′ such that T ⊆ T ′ and

given any tree (or two trees, as applicable) from T ′, any tree

constructable using Atom, In0, In1, Scons, usum, uprod is also

contained in T ′.

Remembering the construction of inductivelty defined sets, the closure is

the least fixpoint of a monotone function adding trees to a tree set. This

function must be constructed using Atom, In0, In1, Scons, usum,
uprod. We do not go into the details, but note that it is crucial that

uprod and usum are monotone, and note as well that slight

complications arise from the fact that usum and uprod have type

[(α dtree) set , (α dtree) set] ⇒ (α dtree) set rather than

(α dtree) set ⇒ (α dtree) set .

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 958

The Expected Type of Cons
Cons should have the polymorphic type [α, α list] ⇒ α list . The

important point is: the first argument is of different type than the second

argument. If the first is of type τ , then the second must be of type τ list .
In contrast, CONS is of type [(α dtree), (α dtree)] ⇒ α dtree.

In order to apply CONS to a “list” (in fact an s-expression) and a “list

element”, we must first wrap the list element by Atom ◦ Inl , so that it

becomes an s-expression.

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 959

List Syntaxes

Nil , Cons(7,Nil), Cons(5,Cons(7,Nil)) are lists written according to

what some programming languages introduce as the first, “official”

syntax for lists.

For convenience, programming languages typically allow for the same

lists to be written as [], [7], [5, 7].

Wolff: HOL: Datatypes; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)

http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1190

References

[Wen99] Markus Wenzel. Inductive datatypes in hol - lessons learned in formal-logic
engineering. In Yves Bertot, Gilles Dowek, André Hirschowitz, and and
Laurent Théry C. Paulin, editors, Proceedings of TPHOLs, volume 1690 of
LNCS, pages 19–36. Springer-Verlag, 1999.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16812)

http://www.infsec.ethz.ch/education/permanent/csmr/

	Part I: Logics
	Part II: The Meta-logical Approach
	Part III:Theorem Proving with Isabelle
	Part IV:The Semantic Approach (HOL)
	Higher-Order Logic: Datatypes
	S-Expressions
	Lists in Isabelle
	More Detailed Explanations

	Part V:Applications
	References
	References

