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Language Semantics: An Introduction 961

Language Semantics: An Introduction

Question: What is the meaning of a (programming or
specification) language?

Meaning / Values
Language (interpretation @antlc domain)

e Syntax: language = set of symbols

e Semantics: set of denotations, the semantic domain

e Meaning is a function (interpretation Sem) relating them.
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Terminology

e embedding: a theory representing syntax and semantics of
a language in a theorem prover.

e object-language Is the language to be
represented, meta-language the language used for this (e.g.

Pure for HOL)

e a deep embedding declares syntax as a data type and
defines an explicit interpretation Sem

e a shallow embedding just provides the semantic functions
for the operations of the language (no own syntax; e.g.
variables are represented by meta-language variables).
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There are several em

Isabelle/HOL [Nip02]:

Hoare:
MP:
MPP:

MicroJava:

shal

Imperative Languages in the Isabelle/HOL

Library

pbeddings of imperative languages in

owish, good examples

deepish, good theory
extends IMP with procedures
deep, complex, powerful, state-of-the-art

We choose IMP to learn a bit about “good ole imperative
languages’ .
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IMP offers:

e operational semantics;
o natural semantics[Plo81, CDTK86];

o transition semantics[Plo81];

e denotational semantics;
e axiomatic semantics (Hoare logic);
e equivalence proofs;

e weakest preconditions and verification condition generator.

It closely follows the standard textbook [Win96].
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The Command Language (Syntax)
The (abstract) syntax is defined in Com.thy.

Com = Main + datatype com =
typedecl loc SKIP
types ":==" loc aexp (infix| 60)

val = nat (*xarb.x) Semi com com (" _; "[60, 60]10)
state = loc=-val Cond bexp com com

aexp = state=-val (" IF ~ THEN ELSE "60)
bexp = state=-bool | While bexp com (" WHILE _ DO _"60)

The type loc stands for locations. Note expressions are
represented using the shallow technique. The datatype com
stands for commands (command sequences).
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Operational Semantics: Two Kinds

Natural semantics (idea: a program relates states):
/7

state

a u—-br

state state’

state”

evalc :: (com xstate X state) set

Transition semantics (idea: relates “configurations” ):
X", state”

a := b; X, state X, state’

X”/, state”

evalcl :: ((com xstate) x (com xstate)) set
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Natural Semantics

"he transition relation of natural semantics is inductively
defined.

consts evalc :: (com Xxstate X state) set
translations "<cm,s> —c—>s' " ="(cm,s,s") € evalc”

We now start giving the actual inductive definition of the
natural semantics transition relation . . .

"his means intuitively: The given steps are the only steps.
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Natural Semantics: Skip and Assignment

inductive evalc

Intrs
Skip:  (SKIP,s) —c—>s
Assign (x :== a,s) —c—> s|x::=(a s)]

Note that s[x::=(a s)]| is an abbreviation for
update s x (a s), where

update s x v =\ y. if y=xthenv else sy

Note that a is of type aexp or bexp.
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Natural Semantics: Sequential Composition

Semi | <c0,s> —c—>s1;<clsl> —c—>s2]
—> <c0;c1l, s> —c—>5s2

Rationale of natural semantics:
e ‘jump’ viacOfromstosl,...

e ... then jump” viac1 from s1 tos?2
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Natural Semantics: Control Statements

If True [ bs; <c0s> —c—>s1]
— < IF b THEN c 0 ELSE c1, s> —c—>s_1

IfFalse [ bs; <cls>—c—>s1]
—> < IF b THEN c O ELSE c1, s> —c—>s_1

WhileFalse [—b s]
—> <WHILE b DO c, s> —c—>s

WhileTrue | b's; <c¢,s> —c—> s 1;
<WHILE b DO c¢,s 1> —c—>s 2|
—> <WHILE b DO ¢, s> —c—> s ?2

Smaus,Wolff: HOL Applications: IMP; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

Natural Semantics 971

Note that for non-terminating programs no final state can be
derived !
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Transition Semantics

Transition semantics relates (inductively defined)
“configurations” .

consts evalcl :: ((com xstate) x (com Xxstate)) set
translations "cs 0 —1—>cs 1" ="(cs0,cs.1) € evalcl”

We now start giving the actual inductive definition . . .
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Transition Semantics:
Assignment, Sequential Composition

inductive evalcl
Intro
Assign  (x:==a,s) —1—> (SKIP, s|x::=a s|)
Semil  (SKIP;c,s) —1—> (c,s)
Semi2 (c0,s) —1->(c2s1)
— (c0;cl,s) —1—> (c2;c1ls1)

Rationale of Transition Semantics:

e the first component in a configuration represents a
program counter . . .

e transition semantics is close to an abstract machine.
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Transition Semantics: Control Statements

If True
bs = (IF b THEN c1 ELSE c2,s) —1—> (c 1,s)

IfFalse
—bs=( IF b THEN c1 ELSE c2,s) —1—> (c 2,s)

WhileFalse
—bs = ( WHILE b DO c,s) —1—> (SKIP,s)

WhileTrue
bs = (WHILE b DO c,s) —1—> (¢;WHILE b DO c,s)
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A non-terminating loop always leads to successor
configurations . . .
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Generalized Step Relations

e n-step semantics:

"cs 0 —n—> cs 1" == "(cs.0,cs 1) €evalcl™n”

e multistep-semantics:
"cs 0 —x—> (c.1,s.1)" ="(cs0,c1,s1) € evalcl™%"
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Equivalence
Natural semantics vs. transition semantics.

Theorem 1 (evalcl_eq_evalc):
(c, s) —x—> (SKIP, t) = (<c,s> —c—> t)

Proof: by induction over com.
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Denotational Semantics

ldea:Explain recursion as fixpoint construction on the
semantic-domain

com - semantic domain

An (imperative) semantic domain is a state relation:

com den = (state x state) set

Semantic function:
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consts C :: com =com den
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The Inductive Definition

The semantics C is defined inductively:

primrec
C.skip  C(SKIP) = Id
C.assigh C(x:==a) ={(s,t). t = s[x::=a(s)]}
Ccomp C(c0; cl) =C(c1) 0O (C(c0)
C.if C( IF b THEN c_.1 ELSE C2) =
{(s,t). (s,t) €C(c 1) Ab(s)} U
{(s,t). (s,t) €C(c2) A=b(s)}"
C while  C(WHILE b DO c) = Ifp (Gamma b (C c))"

where
Gamma b cd =(Aphi.{(s,t). (s,t) € (phi O cd) Ab(s)} U
{(s,t). s=t A=b(s)})
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Equivalence of Programs

The following is an equivalence relating program fragments.

Theorem 2 (C_While_If):

C (WHILE b DO c¢) =
C(IF b THEN c; WHILE b DO ¢ ELSE SKIP)

Such results justify program transformations.
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Equivalence of Semantics
It turns out that denotational and natural semantics are
equivalent in the following sense:
Theorem 3 (denotational is natural):
((s, t) €Cc) = (<c,5> —c—> t)

Still, if we want to prove properties of states to hold, we
need different proof techniques. An answer to this need is
axiomatic semantics or Hoare Logics.
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Axiomatic Semantics

ldea:we relate “legal states” before and after a program
execution. A set of legal states is an “assertion”:

types assn = state = bool
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Hoare Logics

The key concept of a Hoare Logics is a Hoare Triple

consts hoare :: (assn xcom Xxassn) set
translations " |— {P}c{Q}" ="(P,c,Q) €hoare”

A triple has the intuitive meaning: if P holds for some state

s and c terminates and reaches some state s’ then Q must
hold for s'.

The “logic” itself is an inductive definition:
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Hoare Logics: SKIP

inductive hoare
Intro
skip

— [P} SKIP {P}"
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Hoare Logics: Assighment

ass "|— {)As. P(s[x::=(a s)])} xi==a {P}"

This may be counter-intuitive but but consider the example
a=As.land P=As.sz =1

{As.(As.sz =1)(s|z == 1])}z == As.1{As.sz =1} —3
{As.(slz n=1])xr =1}x ;== As.1{As.sx = 1} —3
{As. Truetx ;== As.1{s.sx = 1}
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Hoare Logics: Sequence,IF

semi [ [— 1P}c{Q}; [= 1Q}diR} |
— |— {P} ¢;d {R}

If [ |[— {Xs. Ps Ab s}c{Q};

|[— {Xs. Ps A—bs}d{Q}]
— |- {P} IF b THEN c ELSE d {Q}"

The rule for IF represents, as expected, the case split.
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Hoare Logics: WHILE

While
[ = {Xs. Ps Abs}c{P}]
— |— {P} WHILE b DO c {As. Ps A —bs}"

If WHILE terminates, then the contrary of the condition
must hold. . .
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Hoare Logics: Consequence Rule

conseq [ Vs. P's —Ps;

|— {P}ciQ);
Vs. Qs —Q' s |

= |= 1P'jcQ;

One can always strengthen the pre-condition or weaken the
post-condition.

Smaus,Wolff: HOL Applications: IMP; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

Axiomatic Semantics 990

Hoare Logics at a Glance

inductive hoare

Intro
skip |— {P}SKIP{P}
ass |— {Xs. P(s[x::=a s])} xi==a {P}
semi [ [= 1P}c{Q}; [= 1QydiR} |[==|= {P} cid {R}

If [ |[— {Xs. Ps Abs}c{Q}; |[— {As. P s A —=b s}d{Q}]
—> |- {P} IF b THEN c ELSE d {Q}

While |- {Xs. Ps Ab s} c {P}
—> |- {P} WHILE b DO c {Xs. Ps A—bs}

conseq[Vs.P' s —P s;|—{P}c{Q};
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Vs. Qs —Q's| = |— {P'}c{Q’
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Validity Relation
We define a validity relation:

= {P}c{Q} =Vs. Vt. (s,t) €C(c) —Ps —Qt"

Validity represents our intuition of what Hoare triples mean:
whenever the program c can make a transition from s to t

(wrt. to the underlying operational/denotational semantics),
and whenever P holds for s, Q must hold for t.
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Relating Hoare and Denotational Semantics

Theorem 4 (Hoare soundness):

- {P} Q) = F 1P} c Q]

Theorem 5 (Hoare relative completeness):

= 1P} ciQ) =F 1P} c{Q}

Why relative?
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So the Hoare relation is in fact compatible with the
denotational semantics of IMP.
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Example Program

tm == )s. 1:

sum == As. 1;

i —= \s. O:

WHILE As. (s sum) <= (s a) DO
(i == As. (s i) + 1;
tm == As. (s tm) + 2
sum == JAs. (s tm) + (s sum))

What does this program do?

rya=1 a=2,...,and look at ¢!
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Square Root
Answer: The program computes the square root. Informally:

Pre = 7 True”
Post = 7i*<a< (i+1)%
Formally
Pre = As. True
Post = Xs. (si)*x(s1) < (sa) A

sa<(si+1)x(si+1)
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Proving {Pre}...{Post}

When using the Hoare-calculus directly:
e we apply the rules following the syntax

e we can apply the conseq-rule initially (interfacing Pre and
Post

e we can apply the conseg-rule when entering a WHILE
(interfacing the invariant)

Abbreviation: ExC = As.Inv s A =s sum < s a ( “exit
condition” ). We will develop the proof and from its
structure “guess’ the Invariant.
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Pro

Zs | {Inv}| WH... {ExC} |14

As tpw)| wa . (B o
4] pepwepe i ey
A | s PW(sP4, sum” )Y sum ... [{BxC}) semi
T {As.PW (s]7i, sum,tm”])}| tm ... {ExC} o 7,

conseq

{Pre}| tm... {Post}

yet t It |
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./41, ./42 andc
il | 2o, | 13
shown.

Completing the Proof

,and {Inv}

WH ...

As | are complete, and | Z,

Is trivial.

{ExC'} remain to be

This also involves the question how the metavariables must
be instantiated.
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What is PIV?

The metavariable PW (“precondition of WHILE™) must
fulfill (to show | Z; |)

Vs.Pre s — PW (s[i ::= 0][sum := 1|[tm ::= 1])
Solution (recall that Pre = As. True):

PW =Xs.st=0Assum=1ANstm =1
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What is Inv?

Continuing our proof tree construction:

{As.Inv s Assum < sa}i:== As.si+ 1{P’}
{P"}tm == As.stm + 2{P"}
{P"}sum :== As.stm + s sum{Inv}

semz’2

{As.Inv s A s sum < sa}l| "body" {Inv}

While

{Inv}{ WH ... {ExC}

Just blindly applying sem: twice gives three formulas to be
proven using ass, one for each assignment in the loop.

Now what are P’ and P”? Have a look at rule ass first!
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Calculating P’ and P” (by Rule ass)

P" = A\s.Inv(s[sum ::= s tm + s sum])

P = Xs".P"(s'[tm ::= s tm + 2]) (rule ass)
= \s".(As.Inv(s|sum ::= s tm + s sum)))

(s'[tm = s tm + 2])
= \s".Inv((s'[tm ::= s" tm + 2])

[sum ::= (§'[tm 1= s" tm + 2]) tm—+
(s'[tm = s" tm + 2]) sum))
= As . Inv(s'[tm = s" tm + 2]
[sum ::= s tm + 2 + s’ sum]).
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Applying ass to 1 :== As.s1+ 1
Now treat 7 :== As.s? + 1 in the same way. Temporarily,
let's write P for As.Inv s A s sum < sa. Recall P =

As. Inv(s[tm := s tm + 2][sum ::= s tm + 2 + s sum)).

P=Xs.P'(s|i :=5"1+1]) (by rule ass)
= \s".(As.Inv(stm = s tm + 2][sum ::= s tm + 2 + s sum)))
(']t :=s"1+1])
= \s'. Inv(( i i=s"1+ 1))
[tm = ('t == 5" i+ 1]) tm + 2]
[sum = (st i=s" 1+ 1)) tm+ 2+ (st = 5" i+ 1]) sum]))
= As.Inv(s[t = s i+ 1|[tm == stm + 2|[sum 1= stm + 2 + s sum]).

So Inv must solve this equation.
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Inv Must Fulfill the Equation

Inv must fulfill the equation

ws.Inv s A\ ssum<sa=
Ws.Inv(sli :=s1+ 1|[tm == stm + 2]
lsum == stm + 2 + s sum])

We can replace A by V due to extensionality.
Guessing the right Inv is obviously difficult! Informally

Inv = "(i+1) =sum A tm=2x1)+1 A i*<a”
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Checking that /nv Fulfills equation

ssum < sa N

(si41)* = (s sum) A

stm=(2x(si))+1 A

(si)* < (sa) A

(recall: = means <) =

(si4+1)+1)* = (ssum)+ (stm) +2 A

(stm+2)=2x(st+1))+1 A
(si+1)° < (sa)
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Proof Sketch

First show the “—"-direction:
(3) — (7) and (1) A (2) — (8) by simple arithmetic. (6) is
shown as follows:
((si+1)+1)* = (si+1)*+2x(si+1)+1
= (ssum)+2(st)+1+2
= (ssum)+ (stm) + 2

VY B
N— I

Smaus,Wolff: HOL Applications: IMP; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

Example Program 1007

Proof Sketch (Cont.)

Now show the “«"-direction:
(7) — (3) and (8) — (4) by simple arithmetic. (2) is shown
as follows:
(si+1) = ((si+1)+1)*—=2x(si+1)—1
= (ssum)+(stm)+2—-2x(st+1)—1

= (ssum)+2x(si+1)+1
—2x%(st1+1)—1

e Y B
N~— I

S sumn

Finally, (2) A (8) — (1). So Inv is indeed an invariant!
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The WHILE Loop: Remarks

We have shown
(“enter condition” A “invar. at entry” )« “invar. at exit”

One would definitely expect —, but < is remarkable!

We can show this because our invariant is so strong: for
showing —, the weaker invariant (2) A (3), i.e.

”(i+1)2:sum A tm=2x%xi)+1

would do (check it!).

But the extra condition i* < a is needed for showing Post,
which states what the program actually computes.
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1009

We have shown

Taking Care of Post

14

continue with | Zo |.

and {Inv}

WH ...

{ExzC}. Now

Does Post s follow from Inv s A —=s sum < sa?

Yes!

(s1)* < (sa)

follows from (4)

(sa) < (si+1)* follows from —s sum < (sa) and (2).
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The Final Missing Part

73 | remains to be shown, I.e.

Vs.PW s — Inv s

or, expanding the solutions for PWW and Inwv

Vs. st=0Assum=1Astm=1—
(s2+1)° = ssum A
stm=(2x*(s1))+1A
(51)* < (sa)

This is easy to check.
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An Alternative for Tackling the Loop Part

Recall that our loop invariant was “too strong’. An
alternative:

{Inv'}i === As.si+ 1{P’}
{P'}tm == As.stm + 2{P"}

{P"}sum == As.stm + s sum{Inv}
Vs.(Inv sA semi?
ssum < sa) — {Inv"} "body" {Inv}
Inv" s

conseq

{As.Inv s A ssum < sa}| "body" {Inv}

While

{Inv}{ WH ... {ExC}
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Alternative (Cont.)
Applying ass as before gives

Inv' = As.Inv(sli = si+ 1]|[tm := stm + 2]
sum = stm + 2 + s sum))

We are left with the proof obligation

Vs.(Inv s Assum < sa) —
Inv(slt :=s1+ 1|[tm := stm + 2]
sum = stm + 2 + s sum))
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Automating Hoare Proofs

In the example, we have verified a program computing the

square root.
But this was tedious, and parts of the task can be

automated.
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Weakest Preconditions

Observation: the Hoare relation is deterministic to a certain
extent.

ldea: we use this fact for the generation of weakest
preconditions.

Weakest preconditions are:

constdefs wp :: com =assn = assn

"wp c Q =(Xs. Vt. (s,t) € C(c) — Q t)"

So wp ¢ () returns the set of states containing all states s
such that if ¢ is reached from s via ¢, then the
post-condition () holds for t. Computable? Not obvious.
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Equivalence Proofs
Main results of the wp-generator are:

wp_SKIP: wp SKIP Q = Q

wp_Ass: wp(x :==a) Q = (As. Q (s[x::=a s]))
wp_Semi: wp(c; d) Q = wp c (wp d Q)

wp_If: wp ( IF b THEN c ELSE d) Q =

(As. (bs —wpcQs)A(-bs—wpdQs))
wp_While True: b s = wp (WHILE b DO c) Qs =
wp (c; WHILE b DO c) Qs
wp_While False: -b's = wp (WHILE b DO c) Qs=Qs
wp_While_if : wp (WHILE b DO c) Qs =
(if b's then wp(c; WHILE b DO c) Qs else Q s)
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Computing Weakest Preconditions

Except for termination problem due to While, weakest
precondition wp can be computed.

This fact can be used for further proof support by
verification condition generation.

ldea: for all statements, the exact wp is computed, except
for the creative step at While, where the assertion INV
provided by the user for the invariant is taken. An additional
function vc ( “verification condition”) establishes necessary
conditions that INV is indeed an invariant.
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Annotated IMP Programs

We enrich the syntax by loop-invariants:

datatype acom =

Askip

Aass loc aexp

Asemi acom acom

Aif bexp acom acom
Awhile bexp assn acom
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Computing a “Approximative” Weakest
Precondition

We define a function that computes an “approximative” wp:

primrec

awp Askip Q = Q

awp (Aass x a) Q = (As. Q(s[x::=a s]))

awp (Asemi c d) Q = awp ¢ (awp d Q)

awp (Aif bc d) Q = (Xs. (b s—awp c Qs) A(—b s—awp d Q s))
awp (Awhile b Inv ¢) Q = Inv

Note that awp is not necessarily a wp; this depends if Inv is
indeed an invariant.
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Verification Condition Generation

Inv 1s an Invariant if verification conditionvc holds:

primrec

vc Askip Q = (As. True)

vc (Aass x a) Q = (As. True)

vc (Asemicd) Q= (Xs.vcc (awpd Q) s Avc d Q s)

vc (Aif bcd) Q=(As.vcc Qs AvcdQs)

vc (Awhile b Inv ¢) Q = (As. (Inv s A-bs —Qs) A
(Inv s Abs —awpclnv s) A
vc ¢ Inv s)
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Results on vc (1)

he following facts on vc and awp makes this concept
powerful:

Theorem 6 (Soundness (vc_sound)):
(Vs. vc ac Q' s) = |— {awp ac Q} astrip ac {Q}

vc generated from the annotated program holds, then there
exists a Hoare-proof for the program without annotations
showing that the postcondition follows from its weakest
(annotated) precondition.
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Results on vc (2)
Moreover, we have:

Theorem 7 (Completeness (vc_complete)):

|— {P} c{Q} =dac. astrip ac =c A
(Vs. vc ac Q's) A
(Vs. Ps — awp ac Q s)

f a Hoare-proof exists, there must exist an annotated
orogram, for which vc generates a true formula and whose
orecondition P implies the its weakest precondition.

Quintessence: vc abstracts Hoare-proofs away from
(imperative) program verification. . .
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Summary
e IMP closely follows the standard textbook [Win96].

e Isabelle/HOL is a powerful framework for embedding
Imperative languages.

e Isabelle/HOL is also a framework for state-of-the-art
languages like JAVA.

e Even verification condition generators can be proven sound
and complete within HOL.
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More Detailed Explanations
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Equivalence Proofs

Summarizing, we have the following equivalence results:

e natural vs. transition semantics

e denotational vs. natural semantics

Smaus,Wolff: HOL Applications: IMP; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1025

Locations

We realize program variables via pointers (locations). The type of
pointers Is an abstract datatype.

Defining of values by nat is just a simplification.

A state is a function taking a location to a value, i.e. intuitively, each
program variable corresponds to a location, each access to a program
variable is an application of state to the location of this variable.
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The Intuition of Natural Semantics

The idea of the natural semantics is that a program relates two states,
the “input state” and the “output state”, provided that it terminates.

This is similar to denotational at first sight, but the treatment of
“recursive” constructs such as the WHILE is different: denotational
semantics reduces these to fixpoint operators, natural semantics to the
(meta)-question, if a derivation for the transition is possible or not.
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The Intuition of Transition Semantics

Unlike the natural semantics, the transition semantics records the single
steps of the computation. A configuration is a pair consisting of a
program and a state, and one step reaches a new program and a new
state.

The intuition behind the program-component is “the program to be
executed”; it iIs manipulated in a stack-like manner during the evaluation
of the rules.

An in-depth investigation of the rules reveals, that there are only finitely
many different programs-components in all configuration traces; these
correspond to “positions” in a program. (Note that assignments have a
“position before” and a “position after” execution). Thus, this
component can be seen as a program counter (PC).
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Understanding Gamma

We discuss the approximation relation Gamma in more detail:

"Gamma b cd =(Aphi.{(s,t). (s,t) : (phi O cd) Ab(s)} U

{(s,t). s=t A=b(s)})"
Note that in the definition of WHILE , the second argument cd to
Gamma is used for the meaning of the body of the loop.
Thus, the underlying principle is similar to the one used when defining
the transitive closure by Ifp.

Let
So={(s,t) | s =t A-b(s)}
be the initial apprimation (the subset of the identity relation, for which

the condition b is false.
Then we can iterate from Sy via composition cd™ arbitrarily many

Smaus,Wolff: HOL Applications: IMP; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1029

transitions through the body of the loop. The Ifp represents the limit of
this approximation process.

Note that for b = Ax. true Sy is empty, therefore Gamma b cd is empty

and, consequently, the denotational semantics C will yield the empty
relation in such cases.
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A Table of Values

a is not modified anywhere. Therefore a can be seen as input of the
program.

¢ counts the number of times the loop is entered, i.e. the final value of ¢
Is the number of times the loop was entered. This number depends on a.
The following table shows that final values of 7, ¢m and sum depending
on the value of a:
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1| tm | sum
0<a<l1l |0 1 1
1<a<4 |1 3 4
4<a<9 |2 5 9
9<a<16 [3| 7 16
16<a<25|4| 9 29
20<a<36|o]| 11 36
36<a<49|6| 13 49

sum takes the values of all squares successively, computed by the famous
binomial formula:

(i+1)°=i*+2i+1

Since tm takes the value 27 + 1 for all ¢ successively, it follows that
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sum + tm always gives the next value of sum.
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(st), (sa) etc.
Informally we talk about variables 7, x etc. and say “x has value 5", for
example. But formally, program variables are realized via locations, and

when accessing a program variable, we get expressions of the form s x.
That is, s 2 is the value of variable x.
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Nondeterminacy in the Hoare Calculus

The conseq rule can always be applied. For all other commands, the
choice for a hoare-rule is uniquely determined.
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Relative Completeness

After Godel, logicians tend to be nervous whenever a logic is claimed to
be complete, in particular if arithmetic is involved as is the case for IMP.
Relative completeness means that for any valid Hoare triple in validity
relation there will be a proof in hoare logic.

However, will we be able to derive in HOL that any semantically valid
hoare triple is valid in the sense of validity relation 7 What if we write
in a precondition something like “if Goldbach’s conjecture holds” or,
worse, “if we can solve an arbitrary diophantine equation™?

The answer is no since HOL itself is incomplete wrt. standard models.
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Program “Fragment”

This is the entire program, namely:

tm == As. 1:

sum == As. 1;

i == \s. 0;

WHILE As. s sum <=s a DO
(i == Xs.s 1 + 1:
tm == As.stm + 2;
sum == As. s tm -+ s sum)

(return to main proof tree)
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Program Fragment

This is the program fragment starting from sum :==, namely:
sum == As. 1:
] —= )\s. 0O
WHILE As. s sum <=s a DO
(i == As. s i + 1;
tm == As.stm + 2;
sum == As. s tm -+ s sum)

(return to main proof tree)
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Program Fragment
This is the program fragment starting from 7 :==, namely:
] == M\x. 0;
WHILE As. s sum <= s a DO
(i == As. s i + 1;
tm == As. s tm + 2;
sum == As. s tm + s sum)

(return to main proof tree)

Smaus,Wolff: HOL Applications: IMP; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1039

Invariant

Inv = "Xs.(si+1)2=ssum A stm=(2xsi)+1 A si*<a”
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Program Fragment
This is the program fragment starting from WHILE, namely:

WHILE As. s sum <= s a DO

(i == Xs.s i + 1;
tm == As.stm + 2;
sum :== As. s tm + s sum)

(return to main proof tree)
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Program Fragment

This is the program fragment consisting of the loop body, namely:

] ‘—= As.s | + 1;
tm == As.stm + 2;
sum == ASs. s tm + s sum

(return to main proof tree)
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A Missing Part

71 |is the formula

Vs.Pre s — PW (s[4, sum,tm”])

where Pre is defined above and PW is a metavariable ( “precondition of
WHILE™).

(return to main proof tree)
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A Missing Part

75 |is the formula

Vs.ExC s — Post s,

l.e.
Vs.Inv s N —sum s < sa — Post s,

where Post is defined above and Inv is a metavariable ( “loop invariant™).
(return to main proof tree)
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Ay

A Missing Part

is the proof tree

ass

{As.PW (s|”i, sum,tm”|) }tm == Ax. 1{As. PW (s|"1, sum”])}

where PW is a metavariable ( “precondition of WHILE").
(return to main proof tree)
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Az

A Missing Part

is the proof tree

ass

{As.PW (sli ::= 0][sum ::= 1]) }sum == Ax.1{\s.PW (st ::= 0])}

where PW is a metavariable ( “precondition of WHILE").
(return to main proof tree)
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A Missing Part

As | is the proof tree

S

(\s.PW (s[i = 0])}i ;== A\z.0{PW}

where PW is a metavariable ( “precondition of WHILE").
(return to main proof tree)
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A Missing Part

73 | i1s the formula

Vs.PW s — Inv s

where PW is a metavariable (“precondition of WHILE") and Inv is a
metavariable ( “loop invariant”).

(return to main proof tree)
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A Missing Part

74 |is the formula

Vs.PW s — PW s

which is of course trivial to prove.
(return to main proof tree)
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An Abbreviation for an Updated State

We use s|”i, sum,tm”] as abbreviation for

(return to main proof tree)
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An Abbreviation for an Updated State

We use s|”i, sum”| as abbreviation for
sli = 0][sum := 1]

(return to main proof tree)
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An Abbreviation for an Updated State

79 99

We use s|”4”] as abbreviation for

(return to main proof tree)
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What must /nv Be?

Recall that we had to prove the three formulas

{As.Inv s Assum < sali:== As.st+ 1{P'}
{P"}tm == As.stm + 2{P"}
{P"}sum == As.stm + s sum{Inv}

all by ass. Dealing with the second and third formula using ass, we
found that

P’ = \s' . Inv(s'[tm ::= s tm + 2|[sum ::= s tm + 2 + s’ sum)).

Therefore, to show

{As.Inv s Assum < sali:== As.si+ 1{P'}

Smaus,Wolff: HOL Applications: IMP; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1053

as well, Inv must have such a form that the formula becomes an

Instance of ass.

Smaus,Wolff: HOL Applications: IMP; http://www.infsec.ethz.ch/education/permanent/csmr/ (rev. 16802)


http://www.infsec.ethz.ch/education/permanent/csmr/

More Detailed Explanations 1190

References

[CDTKS86] J. Cl “ement, J. Despeyroux, T.Despeyroux, and G. Kahn. A simple
applicative language: mini-ml. In Proc. of the 1986 ACM Conference on Lisp
and Functional Programming. ACM, 1986.

[Nip02]  Tobias Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and
R. Steinbruggen, editors, Proof and System-Reliability, pages 341-367.
Kluwer, 2002.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
Denmark, 1981.

[Win96]  Glynn Winskel. The Formal Semantics of Programming Languages — An
Introduction. MIT Press, 1996. 3rd ed.

Basin, Brucker, Smaus, and Wolff: Computer Supported Modeling and Reasoning; April 2005http . //WWW .infsec.e


http://www.infsec.ethz.ch/education/permanent/csmr/

	Part I: Logics
	Part II: The Meta-logical Approach
	Part III:Theorem Proving with Isabelle
	Part IV:The Semantic Approach (HOL)
	Part V:Applications
	Higher-Order Logic Applications: IMP
	Language Semantics: An Introduction
	Operational Semantics: Two Kinds
	Natural Semantics
	Transition Semantics
	Denotational Semantics
	Axiomatic Semantics
	Example Program
	Automating Hoare Proofs
	More Detailed Explanations


	References
	References


