Some aspects of Isabelle/Isar

Makarius Wenzel
Univ. Paris-Sud, LRI

May 2011

The Isabelle/Pure framework

Pure syntax and primitive rules (λ-HOL)

$$
\begin{aligned}
& \alpha \Rightarrow \beta \quad \text { function type (terms depending on terms) } \\
& \wedge::(\alpha \Rightarrow \text { prop }) \Rightarrow \text { prop } \quad \text { universal quantifier (proofs depending on terms) } \\
& \Longrightarrow:: \text { prop } \Rightarrow \text { prop } \Rightarrow \text { prop implication (proofs depending on proofs) } \\
& \begin{array}{c}
{[x:: \alpha]} \\
\frac{b(x):: \beta}{(\lambda x:: \alpha \cdot b(x)):: \alpha \Rightarrow \beta}(\Rightarrow I) \quad \frac{b:: \alpha \Rightarrow \beta \quad a:: \alpha}{(b a):: \beta}(\Rightarrow E)
\end{array} \\
& \text { [} x:: \alpha] \\
& \frac{p(x): B(x)}{(\boldsymbol{\lambda} x:: \alpha \cdot p(x)):(\bigwedge x:: \alpha \cdot B(x))}(\bigwedge I) \quad \frac{p:(\bigwedge x:: \alpha \cdot B(x)) \quad a:: \alpha}{(p a): B(a)}(\bigwedge E) \\
& \begin{array}{c}
{[p: A]} \\
\frac{q: B}{(\boldsymbol{\lambda} p: A \cdot q):(A \Longrightarrow B)}(\Longrightarrow I) \quad \underline{p: A \Longrightarrow B q: A}(p q): B
\end{array}(\Longrightarrow E)
\end{aligned}
$$

Pure rules (standard version)

Note:

- propositions simply typed: omit types for x and judgement $t:: \tau$
- proofs formally irrelevant: omit proof terms p

$$
\begin{aligned}
& \stackrel{\substack{[A] \\
\vdots \\
\stackrel{B}{B} \\
\Longrightarrow}}{ } \quad \xrightarrow[B]{\Longrightarrow} B \quad A
\end{aligned}
$$

Pure equality

$$
\equiv:: \alpha \Rightarrow \alpha \Rightarrow \operatorname{prop}
$$

Axioms for $t \equiv u: \alpha, \beta, \eta$, refl, subst, ext, iff

Unification: solving equations modulo $\alpha \beta \eta$

- Huet: full higher-order unification (infinitary enumeration!)
- Miller: higher-order patterns (unique result)

Note: no built-in computation!

Representing Natural Deduction rules

Examples:

$$
\frac{P \quad Q}{P \wedge Q}
$$

$$
\wedge P Q . P \Longrightarrow Q \Longrightarrow P \wedge Q
$$

$$
\wedge P Q \cdot(P \Longrightarrow Q) \Longrightarrow P \longrightarrow Q
$$

$$
\wedge P n \cdot P 0 \Longrightarrow(\bigwedge n . P n \Longrightarrow P(\text { Suc } n)) \Longrightarrow P n
$$

Representing goals

Protective marker:

\# :: prop \Rightarrow prop
$\# \equiv \lambda A::$ prop. A

Initialization:

$$
\overline{C \Longrightarrow C^{(i n i t)}}
$$

General situation: subgoals imply main goal

$$
B_{1} \Longrightarrow \ldots \Longrightarrow B_{n} \Longrightarrow \# C
$$

Finalization:

$$
\frac{\# C}{C}(\text { finish })
$$

Hereditary Harrop Formulas

Define the following sets:

\boldsymbol{x}	variables atomic formulae (without $\Longrightarrow / \Lambda$)
$\bigwedge \boldsymbol{x}^{*} . \boldsymbol{A}^{*} \Longrightarrow \boldsymbol{A}$	Horn Clauses
$\boldsymbol{H} \stackrel{\text { def }}{=} \bigwedge \boldsymbol{x}^{*} . \boldsymbol{H}^{*} \Longrightarrow \boldsymbol{A}$	Hereditary Harrop Formulas (HHF)

Conventions for results:

- outermost quantification $\bigwedge x . B x$ is rephrased via schematic variables B ? x
- equivalence $(A \Longrightarrow(\bigwedge x . B x)) \equiv(\bigwedge x . A \Longrightarrow B x)$ produces canonical HHF

Rule composition (back-chaining)

$$
\bar{A} \Longrightarrow B \quad \frac{B^{\prime}}{\bar{A} \theta} \Longrightarrow_{C} \quad B \theta=B^{\prime} \theta(\text { compose })
$$

$$
\begin{aligned}
\bar{A} & \Longrightarrow B \\
(\bar{H} \Longrightarrow \bar{A}) \Longrightarrow(\bar{H} \Longrightarrow B) & \Longrightarrow-l i f t) ~
\end{aligned}
$$

$$
\begin{aligned}
& \bar{A} \bar{a} \Longrightarrow B \bar{a} \\
&(\bigwedge \bar{x} . \bar{A}(\bar{a} \bar{x})) \Longrightarrow(\bigwedge \bar{x} \cdot B(\bar{a} \bar{x})) \\
&(\bigwedge \text {-lift })
\end{aligned}
$$

General higher-order resolution

$$
\begin{aligned}
& \begin{aligned}
\text { rule: } \\
\text { goal: }
\end{aligned} \bar{A} \bar{a} \Longrightarrow B \bar{a} \\
&\left(\bigwedge \bar{x} \cdot \bar{H} \bar{x} \Longrightarrow B^{\prime} \bar{x}\right) \Longrightarrow C \\
& \text { goal unifier: }(\lambda \bar{x} \cdot B(\bar{a} \bar{x})) \theta=B^{\prime} \theta
\end{aligned} \text { (resolution) }
$$

Both inferences are omnipresent in Isabelle/Isar:

- resolution: e.g. OF attribute, rule method, also command
- assumption: e.g. assumption method, implicit proof ending

Example: tactic proof

```
lemma }A\wedgeB\longrightarrowB\wedge
    apply (rule impI)
    apply (rule conjI)
    apply (rule conjunct2) - schematic state!
    apply assumption
    apply (rule conjunct1) - schematic state!
    apply assumption
    done
lemma }A\wedgeB\longrightarrowB\wedge
    apply (rule impI)
    apply (rule conjI)
    apply (erule conjunct2)
    apply (erule conjunct1)
    done
```

Notions of proof

Informal proof: mathematical vernacular

[Davey and Priestley: Introduction to Lattices and Order, Cambridge 1990, pages 93-94]

The Knaster-Tarski Fixpoint Theorem. Let L be a complete lattice and $f: L \rightarrow L$ an order-preserving map. Then $\rceil\{x \in L \mid$ $f(x) \leq x\}$ is a fixpoint of f.
Proof. Let $H=\{x \in L \mid f(x) \leq x\}$ and $a=\Pi H$. For all $x \in H$ we have $a \leq x$, so $f(a) \leq f(x) \leq x$. Thus $f(a)$ is a lower bound of H, whence $f(a) \leq a$. We now use this inequality to prove the reverse one (!) and thereby complete the proof that a is a fixpoint. Since f is order-preserving, $f(f(a)) \leq f(a)$. This says $f(a) \in H$, so $a \leq f(a)$.

Formal proof (1): lambda term

```
Knaster_Tarski \equiv
    \lambda(H: _) Ha: _.
        order_trans_rules_24 • _ _ • (thm • H) •
        (complete_lattice_class.Inf_greatest . . . . H •
            (\lambda}xHb
```



```
                (complete_lattice_class.Inf_lower • _ _ • H | Hb) -
```



```
                Ha)) •
        (complete_lattice_class.Inf_lower • _ _ • H •
            (iffD2 • _ _ • (mem_Collect_eq • ?f ( }\{x.\mathrm{ ?f }x\leqx}) • (\lambdaa. ?f a\leqa) • (thm •H)) 
                (Ha\cdot ?f (П{x. ?f }x\leqx})\cdot\Pi{x. ?f x\leqx} 
                    (complete_lattice_class.Inf_greatest • _ . _ • H •
                    (\lambdax Hb:..
```



```
                        (complete_lattice_class.Inf_lower • _ _ • H • Hb) •
                                (iffD1 • _ _ • (mem_Collect_eq • x • (\lambdax. ?f x \leq x) • (thm •H)) •Hb) •
                                Ha)))))
```


Formal proof (2): Isar text

```
theorem Knaster_Tarski:
    fixes \(f\) :: 'a::complete_lattice \(\Rightarrow{ }^{\prime} a\)
    assumes mono: \(\bigwedge x y . x \leq y \Longrightarrow f x \leq f y\)
    shows \(f(\Pi\{x . f x \leq x\})=\rceil\{x . f x \leq x\} \quad(\) is \(f ? a=? a)\)
proof -
    have \(f ? a \leq ? a \quad(\) is \(-\leq \Pi ? H)\)
    proof (rule Inf_greatest)
        fix \(x\) assume \(x \in\) ? \(H\)
        then have ? \(a \leq x\) by (rule Inf_lower)
        also from \(\langle x \in ? H\rangle\) have \(f \ldots \leq x\)..
        moreover note mono finally show \(f ? a \leq x\).
    qed
    also have \(? a \leq f ? a\)
    proof (rule Inf_lower)
        from mono and \(\langle f ? a \leq ? a\rangle\) have \(f(f ? a) \leq f ? a\).
        then show \(f ? a \in ? H\)..
    qed
    finally show \(f ? a=? a\).
qed
```


Isar language characteristics

Isar: "Intelligible semi-automated reasoning"

- interpreted language of "proof expressions"
- proof context
- flow of facts towards goals
- simple reduction to Isabelle/Pure logic
- language framework
- highly structured
- highly extensible: derived commands, proof methods
- non-computational: language for proofs, not proof procedures

Example proofs patterns: induction and calculation

```
theorem fixes n :: nat shows P n
proof (induct n)
    show P 0 <proof\rangle
next
    fix n assume P n
    show P (Suc n) <proof\rangle
qed
notepad
begin
    have }a=b \langleproof
    also have ... = c \langleproof\rangle
    also have ... = d \langleproof\rangle
    finally have }a=d\mathrm{ .
end
```


Example proof: induction \times calculation

```
theorem
    fixes \(n\) :: nat
    shows \(\left(\sum i=0 . . n . i\right)=n *(n+1)\) div 2
proof (induct \(n\) )
    case 0
    have \(\left(\sum i=0 . .0 . i\right)=(0::\) nat \()\) by \(\operatorname{simp}\)
    also have \(\ldots=0 *(0+1)\) div 2 by \(\operatorname{simp}\)
    finally show ? case.
next
    case (Suc n)
    have \(\left(\sum i=0 .\right.\). Suc \(\left.n . i\right)=\left(\sum i=0 . . n . i\right)+(n+1)\) by simp
    also have \(\ldots=n *(n+1)\) div \(2+(n+1)\) by (simp add: Suc.hyps)
    also have \(\ldots=(n *(n+1)+2 *(n+1))\) div 2 by simp
    also have \(\ldots=(\) Suc \(n *(\) Suc \(n+1))\) div 2 by simp
    finally show? case.
qed
```


The Isar proof language

Notepad for logical entities

notepad

begin
Terms:

```
let \(? f=\lambda x . x \quad\) - term binding (abbreviation)
let + ? \(b=\) ?f \(a+b \quad\) - pattern matching
let \(? g=\) ?f ?f - Hindler-Milner polymorphism
```


Facts:

note rules $=$ sym refl trans - collective facts
note $a=\operatorname{rules}(2) \quad$ - selection
note $b=$ this \quad - implicit result this
end

Logical contexts

Main judgment:

$$
\Gamma \vdash_{\Theta} \varphi
$$

- φ : conclusion (rule statement using $\Lambda / \Longrightarrow$)
- Θ : global theory context

type $\forall \bar{\alpha} .(\bar{\alpha}) c$	polymorphic type constructor
const $c:: \forall \bar{\alpha} \cdot \tau[\bar{\alpha}]$	polymorphic term constant
axiom $a: \forall \bar{\alpha} . A[\bar{\alpha}]$	polymorphic proof constant

- Γ : local proof context

type α	fixed type variable
fix $x:: \tau[\alpha]$	fixed term variable
assume $a: A[\alpha, x]$	fixed proof variable

Proof context elements (forward reasoning)

```
notepad
begin
    \{
        fix \(x\)
        have \(B x\langle p r o o f\rangle\)
    \}
    have \(\wedge x . B x\) by fact
end
```

```
notepad
begin
    {
        assume A
        have B \langleproof\rangle
    }
    have }A\LongrightarrowB\mathrm{ by fact
end
```


Local claims and proofs

```
Main idea: Pure rules turned into proof schemes
    from facts}\mp@subsup{}{1}{}\mathrm{ have props using facts }\mp@subsup{}{2}{
    proof (initial_method)
        body
qed (terminal_method)
```

Solving sub-problems: within body
fix vars
assume props
show props \langle proof〉

Canonical backwards reasoning

```
notepad
begin
    have }A\longrightarrow
    proof (rule impI)
        assume }
        show B \langleproof\rangle
    qed
end
```

```
notepad
begin
    have \(\forall x . B x\)
    proof (rule allI)
        fix \(x\)
        show \(B x\) 〈proof〉
    qed
end
```

Note: standard rules can be used implicitly by omitting "(rule impI)" and "(rule allI)" above.

Example: basic natural deduction

```
notepad
begin
    have }A\wedgeB\longrightarrowB\wedge
    proof
        assume ab:A\wedgeB
        show }B\wedge
        proof
            show }B\mathrm{ using }ab\mathrm{ by rule
            show }A\mathrm{ using ab by rule
        qed
    qed
end
```


Atomic proofs

Single-step proofs:
$\begin{aligned} \text { by rule } & \equiv \\ \text { by this } & \equiv\end{aligned}$
Automated proofs:
by auto
by simp
by blast
by force
Omitted proofs:
sorry \equiv by cheating

Analyzing atomic proofs

General atomic proof:
by (initial_method) (terminal_method)

Structured expansion:
proof (initial_method) qed (terminal_method)

Tactical transformation:
apply (initial_method)
apply (terminal_method)
apply (assumption+)?
done

Derived proof patterns

Calculational reasoning

also $_{0}$	$=$ note calculation = this
also $_{n+1}$	$=$ note calculation = trans [OF calculation this]
finally	$=$ also from calculation
moreover	$=$ note calculation = calculation this
ultimately	$=$ moreover from calculation

Example:

notepad notepad
begin
have $a=b$ 〈proof \rangle
also have $\ldots=c \quad\langle p r o o f\rangle$
also have $\ldots=d\langle$ proof \rangle
finally have $a=d$. end
begin
have $A \quad\langle p r o o f\rangle$
moreover have $B\langle p r o o f\rangle$
moreover have $C\langle$ proof \rangle
ultimately have A and B and C.
end

Note: term ". . ." abbreviates the argument of the last statement

Induction

```
using facts
proof (induct insts arbitrary: vars rule: fact)
```


Example:

```
notepad
begin
    fix n :: nat and x :: 'a have P n x
    proof (induct n arbitrary: x)
        case 0
        show P 0 x \langleproof\rangle
    next
        case (Suc n)
        from }\langleP\mathrm{ n a> show P (Suc n) x <proof>
    qed
end
```


Generalized elimination

obtain \bar{x} where $\bar{B} \bar{x}\langle$ proof $\rangle=$
have reduction: ^thesis. $(\bigwedge \bar{x} . \bar{B} \bar{x} \Longrightarrow$ thesis $) \Longrightarrow$ thesis \langle proof \rangle fix \bar{x} assume $<$ eliminate reduction $\gg \bar{B} \bar{x}$

$$
\begin{aligned}
& \Gamma \vdash \bigwedge \text { thesis. }(\bigwedge \bar{x} \cdot \bar{B} \bar{x} \Longrightarrow \text { thesis }) \Longrightarrow \text { thesis } \\
& \Gamma \cup \bar{B} \bar{x} \vdash C \\
& \Gamma \vdash C
\end{aligned}
$$

Example:

notepad
begin
assume $\exists x . B x$
then obtain x where $B x$.. end
notepad
begin
assume $A \wedge B$
then obtain A and B..
end

