Some aspects of Isabelle/Isar

Makarius Wenzel Univ. Paris-Sud, LRI

May 2011

The Isabelle/Pure framework

Pure syntax and primitive rules (λ -HOL)

$$\begin{array}{l} \alpha \Rightarrow \beta \\ \bigwedge :: (\alpha \Rightarrow prop) \Rightarrow prop \\ \Longrightarrow :: prop \Rightarrow prop \Rightarrow prop \end{array}$$

function type (terms depending on terms)
universal quantifier (proofs depending on terms)
implication (proofs depending on proofs)

The Isabelle/Pure framework

Pure rules (standard version)

Note:

- propositions simply typed: omit types for x and judgement t :: τ
- \bullet proofs formally irrelevant: omit proof terms p

$$\begin{bmatrix} x \\ \vdots \\ B(x) \\ \overline{\bigwedge x. B(x)} \end{bmatrix} \xrightarrow{A \implies B A} B \xrightarrow{A}$$

Pure equality

 $\equiv :: \alpha \Rightarrow \alpha \Rightarrow prop$

Axioms for $t \equiv u$: α , β , η , refl, subst, ext, iff

Unification: solving equations modulo $\alpha\beta\eta$

- Huet: full higher-order unification (infinitary enumeration!)
- Miller: higher-order patterns (unique result)

Note: no built-in computation!

Representing Natural Deduction rules

Examples:

Representing goals

Protective marker:

 $\begin{array}{l} \# :: \ prop \Rightarrow \ prop \\ \# \equiv \lambda A :: \ prop. \ A \end{array}$

Initialization:

$$\overline{C \Longrightarrow \#C}^{(init)}$$

General situation: subgoals imply main goal

$$B_1 \Longrightarrow \ldots \Longrightarrow B_n \Longrightarrow \#C$$

Finalization:

$$\frac{\#C}{C}(finish)$$

The Isabelle/Pure framework

Hereditary Harrop Formulas

Define the following sets:

 $egin{aligned} x & ext{variables} \ A & ext{atomic formulae (without} \Longrightarrow / ightarrow) \ & ightarrow x^*. \ A^* \Longrightarrow A & ext{Horn Clauses} \ & H \stackrel{ ext{def}}{=} ightarrow x^*. \ H^* \Longrightarrow A & ext{Hereditarry Harrop Formulas (HHF)} \end{aligned}$

Conventions for results:

- outermost quantification $\bigwedge x$. $B \ x$ is rephrased via schematic variables $B \ ?x$
- equivalence $(A \implies (\bigwedge x. B x)) \equiv (\bigwedge x. A \implies B x)$ produces canonical HHF

Rule composition (back-chaining)

$$\frac{\overline{A} \Longrightarrow B \quad B' \Longrightarrow C \quad B \theta = B' \theta}{\overline{A} \theta \Longrightarrow C \theta} (compose)$$

$$\frac{\overline{A} \Longrightarrow B}{(\overline{H} \Longrightarrow \overline{A}) \Longrightarrow (\overline{H} \Longrightarrow B)} (\Longrightarrow -lift)$$

$$\frac{\overline{A} \ \overline{a} \Longrightarrow B \ \overline{a}}{(\bigwedge \overline{x}. \ \overline{A} \ (\overline{a} \ \overline{x})) \Longrightarrow (\bigwedge \overline{x}. \ B \ (\overline{a} \ \overline{x}))} (\land -lift)$$

General higher-order resolution

$$rule: \quad \overline{A} \ \overline{a} \Longrightarrow B \ \overline{a}$$

$$goal: \quad (\bigwedge \overline{x}. \ \overline{H} \ \overline{x} \Longrightarrow B' \ \overline{x}) \Longrightarrow C$$

$$goal unifier: \quad (\lambda \overline{x}. \ B \ (\overline{a} \ \overline{x})) \ \theta = B' \theta$$

$$(resolution)$$

$$(\bigwedge \overline{x}. \ \overline{H} \ \overline{x} \Longrightarrow \overline{A} \ (\overline{a} \ \overline{x})) \ \theta \Longrightarrow C \ \theta$$

$$goal: \quad (\bigwedge \overline{x}. \ \overline{H} \ \overline{x} \Longrightarrow A \ \overline{x}) \Longrightarrow C$$

$$assm unifier: \quad A \ \theta = H_i \ \theta \ (for \ some \ H_i)$$

$$C \ \theta$$

$$(assumption)$$

Both inferences are omnipresent in Isabelle/Isar:

- *resolution*: e.g. *OF* attribute, *rule* method, **also** command
- assumption: e.g. assumption method, implicit proof ending

Example: tactic proof

lemma $A \land B \longrightarrow B \land A$ **apply** (rule impI) **apply** (rule conjI) **apply** (rule conjunct2) — schematic state! **apply** assumption **apply** (rule conjunct1) — schematic state! **apply** assumption **done**

lemma $A \land B \longrightarrow B \land A$ **apply** (*rule impI*) **apply** (*rule conjI*) **apply** (*erule conjunct*2) **apply** (*erule conjunct*1) **done**

Notions of proof

Informal proof: mathematical vernacular

[Davey and Priestley: Introduction to Lattices and Order, Cambridge 1990, pages 93–94]

The Knaster-Tarski Fixpoint Theorem. Let L be a complete lattice and $f: L \to L$ an order-preserving map. Then $\prod \{x \in L \mid f(x) \leq x\}$ is a fixpoint of f.

Proof. Let $H = \{x \in L \mid f(x) \leq x\}$ and $a = \prod H$. For all $x \in H$ we have $a \leq x$, so $f(a) \leq f(x) \leq x$. Thus f(a) is a lower bound of H, whence $f(a) \leq a$. We now use this inequality to prove the reverse one (!) and thereby complete the proof that a is a fixpoint. Since f is order-preserving, $f(f(a)) \leq f(a)$. This says $f(a) \in H$, so $a \leq f(a)$.

Formal proof (1): lambda term

$$\begin{split} Knaster_Tarski &\equiv \\ \boldsymbol{\lambda}(H: _) \; Ha: _, \\ order_trans_rules_24 \cdot _ \cdot _ \cdot (thm \cdot H) \cdot \\ (complete_lattice_class.Inf_greatest \cdot _ \cdot _ \cdot H \cdot \\ (\boldsymbol{\lambda}x \; Hb: _, \\ order_trans_rules_7 \cdot \prod \{x. \; ?f \; x \leq x\} \cdot x \cdot ?f \cdot _ \cdot (thm \cdot H) \cdot (thm \cdot H) \cdot \\ (complete_lattice_class.Inf_lower \cdot _ \cdot _ \cdot H \cdot Hb) \cdot \\ (iffD1 \cdot _ \cdot _ \cdot (mem_Collect_eq \cdot x \cdot (\lambda x. \; ?f \; x \leq x) \cdot (thm \cdot H)) \cdot Hb) \cdot \\ Ha)) \cdot \\ (complete_lattice_class.Inf_lower \cdot _ \cdot _ \cdot H \cdot \\ (iffD2 \cdot _ \cdot _ \cdot (mem_Collect_eq \cdot ?f (\prod \{x. \; ?f \; x \leq x\}) \cdot (\lambda a. \; ?f \; a \leq a) \cdot (thm \cdot H)) \cdot \\ (Ha \cdot ?f (\prod \{x. \; ?f \; x \leq x\}) \cdot \prod \{x. \; ?f \; x \leq x\} \cdot \\ (complete_lattice_class.Inf_greatest \cdot _ \cdot _ \cdot H \cdot \\ (\lambda x \; Hb: _, \\ order_trans_rules_7 \cdot \prod \{x. \; ?f \; x \leq x\} \cdot x \cdot ?f \cdot _ \cdot (thm \cdot H) \cdot (thm \cdot H) \cdot \\ (complete_lattice_class.Inf_greatest \cdot _ \cdot _ \cdot H \cdot \\ (\lambda x \; Hb: _, \\ order_trans_rules_7 \cdot \prod \{x. \; ?f \; x \leq x\} \cdot x \cdot ?f \cdot _ \cdot (thm \cdot H) \cdot (thm \cdot H) \cdot \\ (iffD1 \cdot _ \cdot _ \cdot (mem_Collect_eq \cdot x \cdot (\lambda x. \; ?f \; x \leq x\} \cdot (thm \cdot H) \cdot (thm \cdot H) \cdot \\ (iffD1 \cdot _ \cdot _ \cdot (mem_Collect_eq \cdot x \cdot (\lambda x. \; ?f \; x \leq x) \cdot (thm \cdot H) \cdot (thm \cdot H) \cdot \\ (iffD1 \cdot _ \cdot _ \cdot (mem_Collect_eq \cdot x \cdot (\lambda x. \; ?f \; x \leq x) \cdot (thm \cdot H) \cdot (thm \cdot H) \cdot \\ (iffD1 \cdot _ \cdot _ \cdot (mem_Collect_eq \cdot x \cdot (\lambda x. \; ?f \; x \leq x) \cdot (thm \cdot H)) \cdot Hb) \cdot \\ Ha))))) \end{split}$$

Notions of proof

Formal proof (2): Isar text

```
theorem Knaster Tarski:
 fixes f :: 'a::complete\_lattice \Rightarrow 'a
 assumes mono: \bigwedge x y. x < y \implies f x < f y
 shows f ( \prod \{x. f x \le x\} ) = \prod \{x. f x \le x\} (is f ?a = ?a)
proof –
 have f ?a < ?a (is \_ < \square ?H)
 proof (rule Inf_greatest)
   fix x assume x \in ?H
   then have ?a < x by (rule Inf_lower)
   also from \langle x \in \mathcal{P}H \rangle have f \ldots < x.
   moreover note mono finally show f ?a < x.
 ged
 also have ?a < f ?a
 proof (rule Inf_lower)
   from mono and \langle f ? a < ? a \rangle have f(f ? a) < f ? a.
   then show f ?a \in ?H ...
 ged
 finally show f ?a = ?a.
```

qed

Isar language characteristics

Isar: "Intelligible semi-automated reasoning"

- interpreted language of "proof expressions"
 - proof context
 - flow of facts towards goals
 - simple reduction to Isabelle/Pure logic
- language framework
 - highly structured
 - highly extensible: derived commands, proof methods
 - non-computational: language for proofs, not proof procedures

Example proofs patterns: induction and calculation

```
theorem fixes n :: nat shows P n
proof (induct n)
show P \ 0 \ \langle proof \rangle
next
fix n assume P n
show P \ (Suc n) \ \langle proof \rangle
qed
```

```
notepad
begin
have a = b \langle proof \rangle
also have \ldots = c \langle proof \rangle
also have \ldots = d \langle proof \rangle
finally have a = d.
end
```

Example proof: induction \times calculation

theorem

```
fixes n :: nat
 shows (\sum i=0..n. i) = n * (n + 1) div 2
proof (induct n)
 case 0
 have (\sum i=0..0. i) = (0::nat) by simp
 also have \ldots = 0 * (0 + 1) \operatorname{div} 2 by \operatorname{simp}
 finally show ?case .
next
 case (Suc n)
 have (\sum i=0...Suc \ n. \ i) = (\sum i=0...n. \ i) + (n + 1) by simp
 also have \ldots = n * (n + 1) div 2 + (n + 1) by (simp add: Suc.hyps)
 also have \ldots = (n * (n + 1) + 2 * (n + 1)) div 2 by simp
 also have \ldots = (Suc \ n * (Suc \ n + 1)) \ div \ 2 by simp
 finally show ?case .
qed
```

Notions of proof

The Isar proof language

Notepad for logical entities

notepad begin

Terms:

let $?f = \lambda x. x$ — term binding (abbreviation) **let** $_- + ?b = ?f a + b$ — pattern matching **let** ?g = ?f ?f — Hindler-Milner polymorphism

Facts:

note $rules = sym \ refl \ trans$ — collective facts **note** a = rules(2) — selection **note** b = this — implicit result this

end

Logical contexts

Main judgment:

$$\Gamma \vdash_{\Theta} \varphi$$

- φ : conclusion (rule statement using $\Lambda / \Longrightarrow$)
- Θ : global theory context

type $\forall \overline{\alpha}$. $(\overline{\alpha})c$ polymorphic type constructor **const** $c :: \forall \overline{\alpha}. \tau[\overline{\alpha}]$ polymorphic term constant **axiom** $a: \forall \overline{\alpha}. A[\overline{\alpha}]$ polymorphic proof constant

• Γ : local proof context

type α fix $x :: \tau[\alpha]$ fixed term variable **assume** $a: A[\alpha, x]$ fixed proof variable

fixed type variable

Proof context elements (forward reasoning)

```
notepad
                                                   notepad
begin
                                                   begin
                                                     {
  {
   fix x
                                                       assume A
   have B x \langle proof \rangle
                                                       have B \langle proof \rangle
  }
                                                     }
 have \bigwedge x. B x by fact
                                                     have A \Longrightarrow B by fact
end
                                                   end
```

Local claims and proofs

Main idea: Pure rules turned into proof schemes

from facts1 have props using facts2
proof (initial_method)
 body
qed (terminal_method)

Solving sub-problems: within *body*

fix *vars* assume *props* show *props* $\langle proof \rangle$

Canonical backwards reasoning

notepad	notepad
begin	begin
have $A \longrightarrow B$	have $\forall x. B x$
proof (rule impI)	proof (rule allI)
assume A	fix x
show $B \ \langle proof angle$	show $B x \langle proof \rangle$
qed	qed
end	end

Note: standard rules can be used implicitly — by omitting " $(rule \ impI)$ " and " $(rule \ allI)$ " above.

Example: basic natural deduction

```
notepad

begin

have A \land B \longrightarrow B \land A

proof

assume ab: A \land B

show B \land A

proof

show B using ab by rule

show A using ab by rule

qed

qed

end
```

Atomic proofs

Single-step proofs:

by rule \equiv ... by this \equiv .

Automated proofs:

by autoby simpby blastby force

Omitted proofs:

sorry \equiv by cheating

Analyzing atomic proofs

General atomic proof:

by ($initial_method$) ($terminal_method$)

Structured expansion:

proof (initial_method) qed (terminal_method)

Tactical transformation:

apply (initial_method)
apply (terminal_method)
apply (assumption+)?
done

Derived proof patterns

Calculational reasoning

$also_0$	=	note $calculation = this$
$also_{n+1}$	=	note calculation = trans [OF calculation this]
finally	=	also from <i>calculation</i>
moreover	=	note calculation = calculation this
ultimately	=	moreover from calculation

Example:

notepad	notepad
begin	begin
have $a = b \langle proof \rangle$	have $A \ \langle proof \rangle$
also have $\ldots = c \ \langle proof \rangle$	moreover have $B \ \langle proof \rangle$
also have $\ldots = d \ \langle proof \rangle$	moreover have $C \ \langle proof \rangle$
finally have $a = d$.	ultimately have A and B and C
end	end

Note: term "..." abbreviates the argument of the last statement

•

Induction

using facts
proof (induct insts arbitrary: vars rule: fact)

Example:

```
notepad
begin
fix n :: nat and x :: 'a have P n x
proof (induct n \ arbitrary: x)
case 0
show P \ 0 x \ \langle proof \rangle
next
case (Suc \ n)
from \langle P \ n \ a \rangle show P \ (Suc \ n) \ x \ \langle proof \rangle
qed
end
```

Generalized elimination

obtain \overline{x} where $\overline{B} \ \overline{x} \ \langle proof \rangle =$ have reduction: $\land thesis. (\land \overline{x}. \ \overline{B} \ \overline{x} \Longrightarrow thesis) \Longrightarrow thesis \ \langle proof \rangle$ fix \overline{x} assume $\ll eliminate \ reduction \gg \overline{B} \ \overline{x}$ $\Gamma \vdash \land thesis. (\land \overline{x}. \ \overline{B} \ \overline{x} \Longrightarrow thesis) \Longrightarrow thesis$ $\Gamma \cup \overline{B} \ \overline{x} \vdash C$ $\Gamma \vdash C$ (eliminate)

Example:

notepad begin assume $\exists x. B x$ then obtain x where B x.. end notepad begin assume $A \wedge B$ then obtain A and B ... end