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Abstract

Sufficient degree conditions for the existence of properly edge-colored cycles and paths in edge-colored
graphs, multigraphs and random graphs are inverstigated. In particular, we prove that an edge-
colored multigraph of order n on at least three colors and with minimum colored degree greater than
or equal to dn+1

2
e has properly edge-colored cycles of all possible lengths, including hamiltonian cycles.

Longest properly edge-colored paths and hamiltonian paths between given vertices are considered as
well.

1 Introduction and notation

In this work, we consider sufficient degree conditions guarantying the existence of colored cycles and paths

in graphs whose edges are colored with any number of colors. The study of spanning subgraphs with

specified color patterns in edge-colored graphs has witnessed significant developments over the last decade,

and this from both theoretical and practical perspectives. In particular, problems arising in molecular

biology are often modeled by means of colored graphs, i.e., graphs with colored edges and/or vertices

[15]. Given such a graph, original problems correspond to extracting subgraphs such as Hamiltonian and

Eulerian paths or cycles colored in a specified pattern [14, 15]. The most natural pattern in such a context

is that of a proper coloring, which entails adjacent edges/vertices having different colors. Properly colored

paths and cycles have applications in various other fields, as in VLSI for compacting a programmable

logical array [13]. Although a large body of work has already been done [3, 4, 5, 6, 8, 16], in most of

that previous work the number of colors was restricted to two. For instance, while it is well known that

properly edge-colored hamiltonian cycles can be found efficiently in 2-edge colored complete graphs, it is

a long standing question whether there exists a polynomial algorithm for finding such hamiltonian cycles

in edge-colored complete graphs with three colors or more [6]. Notice that the hamiltonian path problem

was solved recently in [10] in the case of complete graphs, whose edges are colored with an arbitrary

number of colors. Recent work on cycles and paths involving colored degrees in edge-colored graphs are

found in [11, 12].
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Formally, let {1, 2, · · · , c} be a set of given c ≥ 2 colors. Throughout the paper, Gc denotes an

edge-colored multigraph so that each edge is colored with some color i∈{1, 2, · · · , c} and no two parallel

edges joining the same pair of vertices have the same color. The vertex and edge-sets of Gc are denoted

by V (Gc) and E(Gc), respectively. The order of Gc is the number n of its vertices. For a given color i,

Ei(Gc) denotes the set of edges of Gc on color i. When no confusion arises, we write V,E and Ei instead

of V (Gc), E(Gc) and Ei(Gc), respectively. When Gc is not a multigraph, i.e., no parallel edges between

any two vertices are allowed, we call it a graph, as usual. For edge-colored complete multigraphs, we

write Kc
n instead of Gc. If H is a subgraph of Gc, then N i(x, H) denotes the set of vertices of H, joined

to x with an edge in color i. Whenever H ∼= Gc, for simplicity, we write N i(x) instead of N i(x, Gc).

The colored i − degree of x, denoted by di(x) equals |N i(x)|, i.e., the cardinality of N i(x). For a given

vertex x and a given positive integer k, the inequality dc(x) ≥ k means that for every i ∈ {1, 2, · · · , c},
di(x) ≥ k. The edge between the vertices x and y is denoted by xy, and its color by c(xy). If A1 and

A2 are vertex-disjoint subsets of V , then the set of edges between A1 and A2 is denoted by A1A2, while

the set of edges among the vertices of A1 is denoted by A1A1. A subgraph of Gc is said to be properly

edge-colored, if any two adjacent edges in this subgraph differ in color. The length of a path is the

number of its edges. A matching M of Gc is a subset of E(Gc) such that no two edges in M share a

common vertex. It is perfect when its cardinality is n
2 . For a given color i, Mi denotes a monochromatic

matching on color i. An edge-colored multigraph Gc of order n is called pancyclic if it contains properly

edge-colored cycles of all possible lengths 2, 3, 4, 5, · · · , n. Similarly, Gc is even-pancyclic if it contains

properly edge-colored cycles of all possible even lengths 2, 4, 6, 8, · · · , 2
⌊

n
2

⌋
.

The paper is organized as follows: In Section 2 we study properly edge colored cycles and paths for

edge-colored graphs. In Section 3 paths and cycles in edge-colored multigraphs are concerned. Some

concluding remarks are given in Section 4.

2 Graphs

Let us start with a theorem concerning properly edge-colored paths in edge-colored graphs of minimum

colored degree d.

Theorem 2.1. Let Gc be a 2-edge colored graph such that for every vertex x, di(x) ≥ d ≥ 1, i ∈ {1, 2}.
Then Gc has a properly edge-colored path of length at least 2d.

Proof. To ease discussion of the notions to come, we suppose that the two colors used are red and blue.

Now, we will introduce some further notation with a scope limited to this proof only. For any properly

edge-colored cycle C and any edge uv with u /∈ V (C) and v ∈ V (C), there is only one way (either

clockwise or counterclockwise in a plane drawing of C) in which we can proceed along C using the edge

uv while keeping the alternating pattern. We denote the resulting properly edge-colored path of length

|C| by uvC.

Assume now, for a contradiction, that the conclusion of the theorem does not hold. Let then P be a

longest properly edge-colored path of length r < 2d. We need not specify that 2d is less than or equal
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to n, since the graph is simple. Let x and y be the two endpoints of P . We call an edge xz of Gc (resp.

yz) external if it is colored otherwise than is the unique edge of P incident with x (resp. y). Clearly,

no edge xz or yz with z ∈ V (G)�V (P ) is external. Moreover, the number of external edges is at least

2d. Extensive use will be made throughout the proof of the following observation: if a vertex u is the

endpoint of two properly edge-colored paths P1, P2 of maximum length in Gc, and if the two paths start

with edges colored differently at u, then all the neighbours of u (whether red or blue) are in P1 ∪ P2.

Therefore P1 ∪ P2 has length at least 2d. If, in addition, both paths happen to be included in P , then

we are home, because then P will be 2d in length at least. First, we can see that V (P ) does not contain

any properly edge-colored cycle of length r + 1 since, from the degree condition, we can use any vertex u

of P to exit the cycle, which yields an even longer path than P . Furthermore, the previous observation

implies that V (P ) does not contain cycles of length r either, since that would imply the existence of a

vertex t ∈ V (P ) that is linked with two edges in different colors to a cycle of length r, an occurence which

would cause vertex t to be the enpoint of two paths P1 and P2 of length r, both included in V (P ) and

starting from t with edges colored differently: we know that this entails V (P ) being 2d in length.

Now, with those preliminary remarks in mind, we claim that:

Assertion 1: There exists a partition of V (P ) either into two properly edge-colored cycles or into

two properly edge-colored cycles C1 and C2 and a vertex u. Moreover, in the latter case, u is linked to

the two cycles with two edges of different colors.

Proof of the Assertion 1:

We distinguish two cases depending on the parity of r.

Case 1: r is odd.

Set then P : x1y1x2 · · ·xpyp for some integer p ≥ 1, so that x = x1 and y = yp and r = 2p − 1.

Suppose that x1y1 is red. Observe that every external edge is incident with one endpoint of some blue

edge yixi+1, i ≤ p − 1. Since there are 2d > 2(p − 1) external edges at least and only p − 1 blue edges

yixi+1, i ≤ p − 1, in P , there is at least one edge yixi+1 that is incident with three or more external

edges. Then, either the pair of edges {x1xi+1, yiyp} are both external, or the pair of edges {x1yi, xi+1yp}
are. Therefore, either the cycle of length r: x1y1...xiypxpyp−1...yi+1x1 is properly edge-colored , which is

impossible according to the above, or the cycles x1y1x2y2...xix1 and yi+1xi+1...xpypyi+1 form a partition

of V (P ) into properly edge-colored cycles, as claimed.

Case 2: r is even.

Set then P : x1y1x2 · · ·xpypxp+1, with p ≤ d−1, and suppose that x1y1 is red. For every vertex yi, i ≤
p−1, one of the edges x1xi+1, xixp+1 must not be external, otherwise the cycle x1xi+1yi+1xi+2...xp+1xi...x1

would be a properly edge-colored cycle of length r, which is not possible according to the observation

above. Similarly, for every vertex xj , j > 1, either one of the edges x1yj−1, yjxp+1 is not external, or

vertex xj together with the cycles x1yj−1...y1x1 and yjxj+1...xp+1yj form a partition as in the assertion.

Observe furthermore that none of the pairs of vertices x1y1 and ypxp+1 forms an external edge since the

graph is simple. Therefore, if our assertion were not true, the number of pairs of vertices within P that

do not form external edges would be at least 2(p− 1) + 2 = 2p in number. That would leave us with no

more than 2p− 1 external edges from among the 2(2p)− 1 potential ones, which are incident with either
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x or y (excluding xy). That amounts to fewer than 2d external edges, a contradiction. The assertion is

proved.

Returning to the proof of the theorem, we consider now a partition as given in Assertion 1. The

smaller of the two cycles in the partition is denoted by C1. An edge uv is called alien if one of its

endpoints is in C1 whereas the other one is in Gc − P . Now we distinguish two cases depending on the

parity of r again. The facts proved under each case will be denoted in reference to their respective cases

lest confusion may arise.

Case A: r is odd.

Let C1 = x1x2 · · ·xkx1 and C2 = y1y2 · · · yt be two properly edge-colored cycles that partition V (P )

as in Assertion 1. Thus k ≤ d. Since the two cyles are mergeable into P , there is at least one edge

between C1 and C2. We may suppose that x1y1 is that edge.

We may suppose as well that x1y1 and x1x2 are blue. Thus, the path x2x3 · · ·xkx1y1C2 is properly

edge-colored of length r. Therefore, there is no blue alien edge incident with x2 (or a longer path would

result from that). We have thus proved the first fact:

Fact A1: There is no blue alien edge incident with x2.

Therefore, as the blue degree of x2 is greater than k− 1, there is at least one blue edge x2yj , for some

j ∈ {1. · · · t}. Now observe this fact:

Fact A2: There is no red alien edge incident with x3.

The existence of such a red alien edge would imply that some vertex u in Gc − P was part both of

a red edge x3u and of another blue edge uv, with v /∈ C1. The existence of v is guaranteed by the red

degree of u being greater than k− 1. Now, if v /∈ C2, we get the path of length r + 1: vux3x4 · · ·x1y1C2,

a contradiction. On the other hand, if v = yq ∈ C2, we get the path of length r + 1: x2x1xk · · ·x3uyqC2,

a contradiction again.

From Fact A2 together with our assumption that k ≤ d, we conclude that there is a red edge in the

form x3yi. Then the path P ′ = x2x1xkxk−1 · · ·x3yiC2 is another path of length r with x2 as endpoint,

with a different color incident with x2. This, as we have seen, is proof that P has length 2d at least,

which settles the case.

Case B: r is even.

Let C1 = x1x2 · · ·xkx1, C2 = y1y2 · · · yt and u1 be the two properly edge-colored cycles and the

singleton, respectively, that partition V (P ) as in the proof of Assertion 1. Assume that C1 is the smaller

cycle of the two , i.e., k ≤ d. Furtehrmore, assume that u1 is linked to C1 with a red edge, say,u1x1,

and to C2 with a blue edge, say u1y1. Suppose without loss of generality that x1x2 is blue and y1y2

is red. Hence the properly edge-colored path of length r: xkxk−1 · · ·x1uy1C2. Observe that this path

starts from xk with a blue edge. Therefore, there is no alien red edge incident with xk, otherwise a longer

properly edge-colored path would result from it. We have just proved:

Fact B1: There is no alien red edge incident with xk.

Now, since the red degree of xk is greater than k−1 and xkxk−1 is blue, there is at least one red edge

in the form xkyi. Now, we claim that:

Fact B2: There is no alien blue edge incident with xk−1.
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The proof being similar to that of Fact A2, we will give only a sketch of it. Suppose that we have

a blue edge xk−1v, with v /∈ V (P ). From the red degree condition on v together with the fact that

neither vxk nor vxk−1 are red, there must be some red edge vw, with w /∈ V (C1) ∪ {u1}. Now, either

w /∈ V (C2) or w ∈ V (C2). In the first case, we get a properly edge-colored path of length r + 1 (namely:

wvxk−1 · · ·x1u1y1C2), while in the second case we get another path P ′ of length r with xk as enpoint

and starting from xk with a red edge (as opposed to a blue edge for P ): xkx1 · · ·xk−1wC2. Thus both

cases lead to a contradiction, according to our observation above, and the fact is proved.

We conclude from Fact B2 that there is at least one blue edge xk−1yj . Now, if no alien blue edge

is incident with xk, we are done, because that would mean, in view of Fact B1, that all the neighbors

of xk (of which there are 2d at least) are in P , a contradiction. Thus, we may suppose that some edge

xkuk (uk ∈ V (Gc)�V (P )) is blue. Observe, furthermore, that uk cannot have a red neighbour outside P

because such a neighbour z, if it existed, would yield the following properly edge-colored path of length

r + 1: zukxkx1 · · ·xk−1wC2. From the degree condition on uk, we conclude that there must be some red

neighbour zj of uk in C2.

Let us recap what we have obtained thus far. We started with vertex u1 and, proceeding backward

along the smaller cycle, we concluded with the existence of a similar vertex uk. Now, if we Repeat the

same steps k times over, we get Fact B3, which sums up our findings so far:

Fact B3: For every vertex xi of C1, there are two vertices ui ∈ V (Gc)�V (P ) and zi ∈ C2 such that:

(1) if i is odd, then xiui is a red edge of Gc and uizi is a blue edge.

(2) if i is even, then xiui is a blue edge of Gc and uizi is a red edge.

It should be emphasized here that none of B3(1) and B3(2) contradict A1 and A2 in any way, since

those are obviously non-overlapping cases, as clearly suggested by their notation.

Now, set X = {xi|i = 1 mod 2}, and Y = {xi|i = 0 mod 2}. Observe that every vertex xi

of X is the endpoint of a longest path starting from xi with a red edge. Similarly, every vertex

xi of Y is the endpoint of a longest path starting from xi with a blue edge. Observe that no blue

edge xixj has both its endpoints in X, because that would yield the properly edge-colored path:

xi+1xi+2 · · ·xj−1xjxixi−1 · · ·xj+1uj+1zj+1C2, which has length r and starts from xi+1 ∈ Y with a red

edge. As xi+1 starts another path of length r with a blue edge incident with xi+1, we conclude that xi+1

has 2d neighbors in P ,a contradiction. Similarly,Y does not have any red edge. Moreover, there is no

blue edge between X and Gc−P , and no red edge between Y and Gc−P (since any of those edges would

extend a longest path).

Thus, every vertex xi of X has not more than |Y | − 1 = k
2 − 1 blue edges within C1, which accounts

for the fact that all edges xiX are red and one edge at least from xiY is red. Moreover, there are no blue

edges at all between X and Gc − P . Similarly, every vertex xj of Y has no more than |X| − 1 = k
2 − 1

red edges within C1, and there are no red edges at all between Y and Gc − P .

On the other hand, every vertex xj in Y has at least d edges within P , with d ≥ r
2 = k+t

2 . Hence,

every vertex xj of Y has a least |C2|
2 = t

2 red edges with C2, whereas x1 has at least t
2 + 1 blue edges

with C2 (because x1u1 is red). Hence the fact again:

Fact B4: There is a vertex yi of C2 such that one of the two conditions holds:
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(i) x1yi+2 is a blue edge, x2yi is a red edge and i is odd

(ii)x1yi is a blue edge, x2yi+2 is a red edge and i is even.

Before proceeding with the proof, notice that each of those conditions, if established, would yield a

properly edge-colored path of length r+1, proving the theorem. In case (i), for instance, that path would

be: u1x1yi+2yi+3 · · · yix2x3 · · ·xkuk. If uk = u1, that path is a properly edge-colored cycle of length r.

Now, let us prove the fact.

We call any portion of length 2 on the cycle C2 a 2-segment. For any 2-segment s = yiyi+1yi+2, let

us say that a pair uv is consistent with s if it is any one of the edges arising in the conditions of the fact.

More formally, a pair uv is consistent with s = yiyi+1yi+2 if one the four conditions holds:

(1) u = x1, v = yi+2, uv blue and i odd

(2) u = x1, v = yi, uv blue and i even

(3) u = x2, v = yi+2, uv red and i even

(4) u = x2, v = yi, uv red and i odd

The conditions are redily seen to be exclusive.

Notice that a blue edge x1yj is consistent with only one 2-segment. Similarly, a blue edge x2yj is consis-

tent with one 2-segment exactly. Consider the function such that 1(s, e) = 1 if the edge e is consistent with

s, and 1(s, e) = 0 otherwise. For any s, denote by |s| the number of pairs consistent with s. Now, summing

the terms 1(s, e) in two different ways, we get:
∑

s

∑
e 1(s, e) =

∑
s |s| = db

C2
(x1) + dr

C2
(x2) > |C2| = t.

Hence, one s at least has two consistent pairs, which proves the fact and the theorem.

Theorem 2.1 is not far from being the best possible. Indeed, for a given integer k ≥ 1 and another even

one d ≥ 2, consider two complete graphs, say G1 and G2, on d+1 and d+1+k vertices, respectively. Color

all edges of G1, G2 red and then add all possible blue edges between G1 and G2. The resulting graph, al-

though its minimum colored degree is d, it has no properly edge-colored path of length greater than 2d+1.

For c ≥ 3, corollary below is easily deduced from previous Theorem 2.1.

Corollary 2.2. Let Gc be a c-edge colored graph, c ≥ 3. If for every vertex x, di(x) ≥ d ≥ 1, i ∈
{1, 2, · · · , c}, then Gc has a properly edge-colored path of length 2b c

2cd.

Proof. Identify all odd-numbered colors with color 1 and all the even-numbered ones with color 2. The

resulting 2-edge-colored graph has minimum degree b c
2cd. Therefore, it has a properly edge-colored path

of length 2b c
2cd, as does the graph Gc.

We believe that Corollary 2.2 is far from being best possible and may be improved. In fact, for given

integers c ≥ 3 and d ≥ 1, let G be a c-edge-colored graph on cd + 1 vertices and such that each color

class has degree d. Consider now a c-edge-colored graph Gc consisting of at least three copies of G having

precisely one common vertex. Although the colored degree of Gc is d, it has no properly edge-colored path

of length greater than 2cd. Hence our conjecture:
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Conjecture 2.3. Let Gc be a c-edge colored graph, c ≥ 3, such that for every vertex x, di(x) ≥ d ≥ 1,

i ∈ {1, 2, · · · , c}. Then Gc has a properly edge-colored path of length at least min(n− 1, 2cd).

Let us now turn our attention to edge-colored complete regular graphs. The reader will recall that

an edge-colored graph is regular if all its monochromatic spanning subgraphs are regular and of the

same degree. Thus the order of such graphs is cd + 1, where d is the degree of every monochromatic

spanning subgraph and c is the number of colors used. Bollobás and Erdös in [8], conjectured that if

the monochromatic degree of every vertex in Kc
n is strictly less than

⌊
n
2

⌋
, then Kc

n contains a properly

edge-colored Hamiltonian cycle, for any c ≥ 3. This conjecture was partially proved in [1] by using an

advanced probabilistic method. The conjecture below is a weaker version of that conjecture by Bollobás

and Erdös for regular edge-colored complete graphs, and perhaps an easier one to prove.

Conjecture 2.4. Any c-edge-colored complete regular graph, c ≥ 3, has a properly edge-colored hamil-

tonian cycle.

Notice that this conjecture is not true for 2-edge-colored complete regular graphs, since such graphs

have an odd number of vertices. Thus they may not contain properly 2-edge colored hamiltonian cycles.

However, by Theorem 2.1 and Corollary 2.2, c-edge-colored complete regular graphs contain a properly

edge-colored hamiltonian path for all even c ≥ 2.

3 Multigraphs

This section is concerned with paths and cycles in edge-colored multigraphs. Notice that neither Corollary

2.2 nor Conjecture 2.3 extends to multigraphs since as many as n properly colored edges may occur

between any pair of vertices in a perfect matching without there being any alternating hamiltonian cycle.

However we have been able to prove Theorem 3.1 below. To be more specific in our statement of the

theorem, we define a particular 2-edge-colored multigraph Hs as follows: Given an integer s ≥ 1, consider

an arbitrary tree on s vertices t1, t2, ..., ts. Now replace each vertex ti by a complete 2-edge colored

multigraph Ti on d + 1 vertices, for some even integer d ≥ 2. For s = 1, define H1 to be the graph T1.

Otherwise, for s ≥ 2, Hs is obtained by assembling all Ti in such a way that Ti, Tj intersect in precisely

one common point if and only if titj is an edge of the tree. Clearly any longest properly edge-colored cycle

in Hs has length d.

Theorem 3.1. Let Gc be a c-edge colored multigraph, c ≥ 2. Assume that for every vertex x, di(x) ≥
d ≥ 1, i ∈ {1, 2, · · · , c}. Then Gc has either a properly-edge colored path of length at least min{n−1, 2d}
or else a properly-edge colored cycle of length d + 1 unless Gc is isomorphic to H1, in which case it has

a cycle of length d.

Proof. Let us suppose that the edges of Gc are colored with two colors, red and blue. Otherwise we

may apply all arguments below to the spanning subgraph of Gc induced by the red/blue edges of Gc.

Assume that Gc has no properly edge-colored path of length greater than or equal to min{n−1, 2d}, for

otherwise we are finished. We shall show that Gc has a properly edge-colored cycle of length at least d+1
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unless Gc ∼= H1. Let P denote a longest properly edge-colored path in Gc. By hypothesis, the length of

P is at most 2d− 1, i.e, P has at most 2d vertices. Set R = Gc − P . Depending upon the parity of the

length of P , set P : x1y1x2 · · ·xpyp or P : x1y1x2 · · ·xpypxp+1 for some integer p ≥ 1. Assume without

lost of generality that every edge xiyi, 1 ≤ i ≤ p, is red while all other edges yixi+1 are blue. Observe

that there is no vertex z ∈ R such that the edge x1z is blue, for otherwise the path zx1y1x2y2 . . . will be

longer than P , a contradiction to the choice of P . Similar arguments hold for the second endpoint of P .

Consider now blue edges incident with x1. Since the other endpoint of each such blue edge necessarily

belongs to P , it follows that P has at least d + 1 vertices.

Suppose first that the length of P is odd. Let us establish the following two facts.

Fact 1. For any blue edge yixi+1, 1 ≤ i ≤ p − 1, of P , the edges x1xi+1 and ypyi (if any) cannot be

both blue, otherwise the properly edge-colored cycle x1xi+1yi+1xi+2 · · · ypyixiyi−1xi−2 · · ·x1 whould be

of length greater than 2p ≥ d + 1. Thus db
{yi,xi+1}(x1) + db

{yi,xi+1}(yp) ≤ 3. Since there are p − 1 blue

edges on P , it follows that
∑p−1

i=1 [db
{yi,xi+1}(x1) + db

{yi,xi+1}(yp)] ≤ 3(p− 1) = 3p− 3.

Fact 2. There are no blue edges x1yi, dd+1
2 e ≤ i ≤ p, otherwise the cycle x1y1 · · · yix1 whould be just as

desired. Similarly, there are no blue edges xiyp, 1 ≤ i ≤ p− dd+1
2 e+ 1.

From Facts 1 and 2, db
R(x1) = db

R(yp) = 0 and the fact p ≤ d, it follows that

db
P (x1) + db

P (yp) ≤ 3p− 3− 2
(
p− dd + 1

2
e
)

= p− 3 + 2dd + 1
2
e

= p− 3 + d + 2,

< 2d− 1,

a contradiction, since db(x1) + dr(xp+1) ≥ 2d.

Let us suppose now that the length of P is even. Consider first the case 2p + 1 ≥ d + 2. Observe, as

in the foregoing, that :

1. If both edges x1xi, xp+1xi−1, 3 ≤ i ≤ p + 1 exist in Gc, then either x1xi is not blue or xp+1xi−1is not

red.

2. There are no blue edges x1yi nor red edges yp−i+1xp+1, dd+1
2 e ≤ i ≤ p.

As above, it follows that

db
P (x1) + dr

P (xp+1) ≤ 3p− 3− 2
(
p− dd + 1

2
e
)

= p− 3 + 2dd + 1
2
e

≤ 2d− 1,

again a contradiction, since db(x1) + dr(xp+1) ≥ 2d.

Suppose now that 2p + 1 = d + 1. Since there is no blue edge x1z, z ∈ R, and the minimum blue degree

of x1 is d, it follows that any edge x1w, w ∈ V (P ) − {x1} is blue. In particular, the edge x1yp is blue.

Thus C : x1y1 · · · ypx1 is a properly edge-colored cycle of length d. Set R′ = Gc − C

Assume first that R′ is an independent set. Then any vertex z of R′ is joined to any vertex of C with
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both blue and red parallel edges. If R′ has at least two vertices, say z, z′, then the path zx1ypxp · · · y1z
′ is

longer than P , a contradiction. If, on the other hand, R′ is a singleton, then let z denote the unique vertex

of R′. If c = 2, then Gc is isomorphic to H1 and thus has a cycle of length d as claimed. Otherwise,

if c ≥ 3, consider an edge, say zxi, xi ∈ V (C), in some color other than red/blue. Then the cycle,

zxiyi−1xi−1 · · · yiz has length d + 1 as required.

It remains to consider the case where R′ is not an independent set, i.e., R′ has at least one edge, say

xy. Choose xy with the property that either x or y, say x, is joined with an edge to at least one vertex,

say w, of C (it is easy to verify that such vertices x, y, w exist in Gc). Observe that, if for some vertex

w of C, c(xw) 6= c(xy), then we can easily join xy to C in order to obtain a path longer than P , a

contradiction to the maximality property of P . It follows that all edges between x and V (C) ∪ {y} are

colored alike. Because of colored degree constraints, there must be some vertex z in R′, distinct from y,

such that c(xz) 6= c(xy). Then, by appropriately concatenating the segment zxw within the cycle C we

obtain again a path longer than P , a final contradiction. This completes the proof of the theorem.

Theorem 3.1 above is partly improved upon in Theorem 3.6 given later, which deals with hamiltonian

cycles in graphs with high colored degrees. Our aim now is at establishing a pair of lemmas with a view

of proving Theorem 3.6.

Lemma 3.2. Let Gc be a c-edge-colored multigraph on n vertices such that any vertex has minimum

colored-degree greater than or equal to n−1
2 . Then Gc has perfect matchings in any given color i, for n

even, and an almost perfect matching for n odd.

Proof. Choose any color, say red, and then consider a spanning subgraph G of Gc induced by the red

edges of Gc. Clearly the minimum degree in G is at least n−1
2 . By a well known theorem of Dirac [9], G

has a hamiltonian path and therefore the conclusion of the lemma trivially holds.

For a given color i, let Mi denote a matching of Gc in color i. The following definitions will be used

in the sequel.

Definition 3.3. A cycle C : x1x2 · · ·x2s−1x2sx1 is compatible with Mi if either all edges x2jx2j+1 or all

edges x2j−1x2j belong to Mi, for any j = 1, · · · , s (all subscripts being modulo 2s).

Definition 3.4. A path P : p1p2 · · · ps is compatible with matching Mi if either the edges pipi+1,

i = 1, 3, · · · , s− 1 or the edges pipi+1, i = 2, 4, · · · , s− 2 of P belong to Mi.

The next two insightful lemmas will pave the way for the proof of the main theorem in this section.

Lemma 3.5. Let Gc be a c-edge-colored multigraph, c ≥ 2, with minimum colored degree dn
2 e. Then Gc

has a properly edge-colored cycle of length greater than or equal to dn
2 e+ 1 compatible with a maximum

matching Mi of Gc for any fixed color i ∈ {1, 2, · · · , c}.
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Proof. Let us suppose without loss of generality that the edges of Gc are colored with two colors

(red/blue). Otherwise, instead of Gc, we may consider the spanning subgraph of Gc induced by its

red/blue edges (since all arguments below apply to such spanning subgraphs). Let us fix a color, say

red. Clearly Gc has a perfect red matching for n even and an almost perfect red matching for n odd,

by Lemma 3.2. Let Mr denote this maximum red matching. Let now P: p1p2 . . . pt denote a path of

maximum length compatible with Mr. We will prove this lemma by contradiction. For this, we assume

that Gc has no properly edge-colored cycle of length greater than or equal to dn
2 e + 1. We distinguish

two cases depending on the parity of n. Let R denote the subgraph of Gc induced by V (Gc)− V (P ).

Case (a). n is even.

Assume first that the last edge of P is blue. As Gc has a red perfect matching, for some vertex z

in R, the edge ptz belongs to Mr. But then the path p1p2 . . . ptz is longer than P and compatible with

Mr, a contradiction to the choice of P . It follows that both the first and last edges of P are colored red,

and thus the length of P is odd. Furthermore, there is no blue edge ptz for any z ∈ V (R), otherwise the

path p1p2 . . . ptz whould be compatible with Mc and longer than P , a contradiction to the choice of P .

Consider now blue edges incident with p1. Since the other endpoint of each such blue edge necessarily

belongs to P , it follows that the number of vertices of P is at least dn
2 e+ 1, that is, t ≥ dn

2 e+ 1.

Notice that for any blue edge pipi+1, i = 2, 4, · · · , t − 2, of P , either p1pi+1 ∈ Eb or ptpi ∈ Eb but

not both, otherwise the properly edge-colored cycle p1pi+1pi+2 · · · ptpipi−1pi−2 · · · p1 whould be of length

greater than dn
2 e. Here the number of blue edges on the path P is equal to t

2 − 1. Set dn
2 e = 2r − 1 or

dn
2 e = 2r, where r is a positive integer.

We distinguish now two subcases depending on the parity of dn
2 e.

Subcase (a1): dn
2 e = 2r − 1 for some integer r ≥ 1. None of the vertices p2r, p2r+2, p2r+4, · · · , pt is

the other enpoint of any blue edge incident with p1, otherwise we have a properly edge-colored cycle of

length greater than dn
2 e. Similarly, vertices p1, p3, p5, · · · ,pt−2r+1 are not the the other enpoints of blue

edges incidents with pt, otherwise we have a properly edge-colored cycle of length greater than dn
2 e. So,

db
P (p1) + db

P (pt) ≤ 2(t− 1)−
( t

2
− 1
)
− 2
( t

2
− r + 1

)
=

t

2
+ 2r − 3.

Observe also that db
R(p1) = db

R(pt) = 0. Thus

db(p1) + db(pt) = db
P (p1) + db

P (pt) + db
R(p1) + db

R(pt)

≤ t

2
+ 2r − 3

=
t

2
+
⌈n

2

⌉
− 2 < n, which is impossible.

Subcase (a2). dn
2 e = 2r. Vertices p2r+2, p2r+4, p2r+6, · · · , pt are not the other endpoints of blue edges

incident with p1, otherwise we have a properly edge-colored cycle of length greater than dn
2 e. Similarly,

vertices p1, p3, p5, · · · ,pt−2r−1 are not the other enpoints of blue edges incident with pt, otherwise we have

10



a properly edge-colored cycle of length greater than dn
2 e. So we have

db
P (p1) + db

P (pt) ≤ 2(p− 1)−
( t

2
− 1
)
− 2
( t

2
− r
)

=
t

2
+ 2r − 1.

As db
R(p1) = db

R(pt) = 0, we obtain,

db(p1) + db(pt) = db
P (p1) + db

P (pt) + db
R(p1) + db

R(pt)

≤ t

2
+ 2r − 1

=
t

2
+
⌈n

2

⌉
− 1 < n, not possible.

Case (B). n is odd.

If pt−1pt ∈ Er, our proof uses arguments very similar to those in Case (A). Assume therefore that

pt−1pt /∈ Er. We have that the number of vertices of path P is greater than or equal to dn
2 e+ 1. Let us

first see whether the number of vertices of path P is equal to dn
2 e+ 1 or not. If possible, let the number

of vertices of path P be equal to dn
2 e+ 1, that is, t = dn

2 e+ 1. Then pt−1pi ∈ Eb, i = 1, 2, · · · , t (6= t−1),

otherwise a properly edge-colored path of length greater than dn
2 e+ 1 exists. Since the first edge p1p2 is

red and the last edge pt−1pt is blue, t must be odd and may be written as t = 2q +1, where q is a positive

integer. Now we consider one red edge xy ∈ Mr, x, y /∈ V (P ). Since db(x) ≥ dn
2 e, vertex x is connected

at least to one vertex of the path P with a blue edge in the form xp2i or xp2i+1. When xp2i ∈ Eb, we

have a properly edge-colored path p2i+1p2i+2 · · · pt−1p1p2 · · · p2i−1p2ixy of length greater than p. When

xp2i+1 ∈ Eb, we have a properly edge-colored path p2ip2i−1 · · · p2p1pt−1pp−2 · · · p2i+2p2i+1xy of length

greater than p. So, our assumption is wrong and hence the number of vertices of path P is greater than

or equal to dn
2 e+ 2.

Now we delete the last blue edge from the path and find out the sum of the blue degrees of p1 and

pt−1 as in Case (A). Clearly, db
R(p1) = db

R(pp) = 0.

Now when dn
2 e is odd, we have

db(p1) + db(pt) = db
P (p1) + db

P (ppt) + db
R(p1) + db

R(pt)

≤
⌊ t

2

⌋
+
⌈n

2

⌉
− 2

< n, not possible.

When dn
2 e is even, we have

db(p1) + db(pt) = db
P (p1) + db

P (pt) + db
R(p1) + db

R(pt)

≤
⌊ t

2

⌋
+
⌈n

2

⌉
− 1

< n, not possible.

Thus all the cases have been proved wrong, which validates our proof by contradiction.
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In the next theorem we prove degree conditions sufficient for an edge-colored multigraph to have a

properly edge colored hamiltonian cycle. Our result may be viewed as a the counterpart to Dirac’s well-

known result for general graphs [9], insofar as the conditions involved deal only with degree conditions

and nothing else.

Theorem 3.6. Let Gc be a c-edge-colored multigraph of order n with minimum colored degree greater

than or equal to dn+1
2 e.

I)If c = 2, then Gc has a properly edge-colored hamiltonian cycle when n is even, and a properly edge-

colored cycle of length n− 1, when n is odd.

II) If c ≥ 3, then Gc has a properly edge-colored hamiltonian cycle.

Proof of Case (I). By contradiction. First we assume that n is even. For a given color, say red, let

us choose a maximum red matching Mr such that:

(1) A longest cycle C : c1c2 · · · cm−1cmc1, compatible with Mr is the longest possible. By our hypothesis

in connection with Lemma 3.5, we have n
2 + 1 ≤ m ≤ n− 2. In the sequel we will suppose that C is given

such an orientation, so that edges cici+1 are blue, for each even i = 2, 4, · · · , (mod) m. The remaining

edges cici+1 are red for each odd i = 1, 3, · · · , (mod) m− 1.

(2) Among all maximum matchings obeying (1), consider a longest path P : p1p2 · · · pq of Gc − C

compatible with Mr. Let R be the graph defined by Gc − (C ∪ P ). Set r = |R|.
Since P is compatible with Mr, either the edges pipi+1, i = 1, 3, · · · , q − 1 or the edges pipi+1,

i = 2, 4, · · · , q − 2 of P belong to Mr. We shall prove that, in fact, each edge pipi+1, is in Mr for every

odd i = 1, 3, · · · , q − 1. To do so, it suffices to show by contradiction that both edges p1p2 and pq−1pq

belong to Mr. Suppose therefore that either p1p2 or pq−1pq, say pq−1pq is not in Mr. Since vertex pq

is incident with some edge of Mr, there exists a vertex, say pq+1 such that pqpq+1 ∈ Mr. Obviously,

pq+1 ∈ R, since all vertices in C ∪ P are already incident with some edge of Mr. But then the path

p1p2 · · · pqpq+1 is longer than P , a contradiction to the maximality property of P . Hence the length of

P is odd. Consider now edges colored in any color different from red, say blue, incident with p1. We call

the vertices of C are even and odd according to their position on the cycle. Definitely, vertex cm on the

cycle is an even one, as the edges of C alternate on red and blue colors. In order to facilitate discussion,

a portion from an odd to an even vertex of C, say c2l+1c2l+2c2l+3 · · · c2t−1 c2t, will be called a segment

if the following hold (here all indices are considered modulo m):

(i) both edges p1c2l and pqc2t+1 are blue,

(ii) the edges p1ci and p1cj (if any) are not blue, for each even i = 2l + 2, 2l + 2, · · · , 2t and each odd

j = 2l + 1, 2l + 3, · · · , 2t− 1.

With the definitions above, a segment has less vertices than P , otherwise pqc2t+1c2t+2 · · · c2lp1p2 · · · pq is a

cycle longer than C, a contradiction to the maximality property of C. In what follows we will distinguish

between three cases depending upon the number of segments we may find on C. Namely: (a) There is

no segment on C, (b) There is one segment on C and (c) There are more than one segments on C.

Case (a). There is no segment on C. Consider blue edges (if any) between p1, pq and C, say p1ci and

pqcj . As there is no segment on C, either indices i and j are both even or both odd. Without loss of

generality we can assume that are even. Let c2w be a vertex of C such that either p1c2w or pqc2w, say
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pqc2w, is blue. If such a vertex c2w does not exist on C, then

db(c2w+1) + db(p1) = db
C(c2w+1) + db

C(p1) + db
P (c2w+1) + db

P (p1) + db
R(c2w+1) + db

R(p1)

≤ 0 + 0 + 2(q − 1) + 2r

≤ n− 4,

a contradiction, since m ≥ n
2 + 1, thus q + r ≤ n−1

2 − 1.

Let us consider first blue edges (if any) between {p1, c2w+1} and P . As the edge c2wpq is a blue one,

there is no blue edge c2w+1ps, for all odd s = 1, 3, · · · , q − 1. For otherwise, if c2w+1cs ∈ Eb, then the

cycle pqc2wc2w−1 · · · c2w+2c2w+1psps+1 · · · pq is longer than C a contradiction to the choice of C. Also,

either c2w+1ps−1 ∈ Eb or p1ps ∈ Eb, but not both, otherwise, the cycle

pqc2wc2w−1 · · · c2w+1ps−1ps−2 · · · p1psps+1 · · · pq is longer than C. It follows that

db
P (c2w+1) + db

P (p1) ≤ q.

Let us consider next blue edges between {p1, c2w+1} and C. For each z 6= w, we have either c2w+1c2z+1 ∈
Eb or p1c2z ∈ Eb, but not both. Otherwise, the cycle p1c2zc2z−1 · · · c2w+1c2z+1c2z+2 · · · c2wpqpq−1 · · · p1

is longer than C. As p1 is connected only to even vertices of C, from the above we obtain,

db
C(c2w+1) + db

C(p1) ≤ m− 1.

Recall also db
R(p1) = 0. It follows that

db(c2w+1) + db(p1) = db
C(c2w+1) + db

C(p1) + db
P (c2w+1) + db

P (p1) + db
R(c2w+1) + db

R(p1)

≤ m− 1 + q + r + 0,

≤ n− 1,

a contradiction.

Next we consider that there is at least one vertex on C, say c2w, such that both p1c2w and pqc2w are blue

edges. Recall also that c2w+1c2w is a blue edge. In this case db
p(c2w+1) = 0, for otherwise we may easily

find a cycle longer than C. Also, similarly as before, we have db
p(p1) ≤ q− 1 and db

c(c2w+1) + db
c(p1) ≤ m.

Now,

db(c2w+1) + db(p1) = db
c(c2w+1) + db

c(p1) + db
p(c2w+1) + db

p(p1) + db
R(c2w+1) + db

R(p1)

≤ m + q − 1 + r + 0,

≤ n− 1,

again a contradiction. This completes the proof of Case (a).

Case (b). There is precisely one segment on C. We let S : c2l+1c2l+2 · · · cm−1cmc1c2 · · · c2t−1c2t denote

the unique segment on C. Let s denote its length. Set S
′

= S ∪ {c2l, c2t+1}. Notice that the portion

C − S
′

of C contains precisely c−s−2
2 edges. Notice also that the number of blue edges between {p1, pp}
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and the endpoints of any blue edge in C −S
′

is at most two. In fact either p1 and pp are both connected

to the same endpoint or one of p1 and pq (but not both) is connected to both endpoints of that blue

edge. Otherwise we may easily define a properly edge-colored cycle with vertex set V (P ) ∪ V (C). Thus

of length greater than m. So we have

db
C−S′

(p1) + db
C−S′

(pq) ≤ m− s− 2.

Similarly for the vertices c2l+1 and c2t, we get db
C−S′

(c2l+1) + db
C−S′

(c2t) ≤ m − s − 2. Also we have

db
R(c2l+1) + db

R(c2t) ≤ 2(n−m− q). Recall also that db
R(p1) = db

R(pq) = 0.

Now,

db(p1) + db(pq) + db(c2l+1) + db(c2t) = db
C−S′

(p1) + db
C−S′

(pq) + db
C−S′

(c2l+1) + db
C−S′

(c2t)

+db
S′

(p1) + db
S′

(c2t) + db
S′

(pq) + db
S′

(c2l+1) + db
P (p1)

+db
P (c2t) + db

P (pq) + db
P (c2l+1) + db

R(c2l+1) + db
R(c2t),

≤ 2(n− s− q)− 4 + db
S′

(p1) + db
S′

(c2t) + db
S′

(pq) + db
S′

(c2l+1)

+db
P (p1) + db

P (c2t) + db
P (pq) + db

P (c2l+1). (1)

Three subcases arises. Namely, (b1) p1c2l+1 ∈ Eb and pqc2t ∈ Eb, (b2) either p1c2l+1 ∈ Eb or pqc2t ∈ Eb

and (b3) neither p1c2l+1 ∈ Eb nor pqc2t ∈ Eb. Let us prove now these three subacases separately.

Subcase (b1). p1c2l+1 ∈ Eb and pqc2t ∈ Eb. In this subcase p1c2t+1 /∈ Eb, pqc2l /∈ Eb, c2l+1c2t+1 /∈
Eb and c2tc2l /∈ Eb. Otherwise we may easily find a properly edge-colored cycle of length greater

than m. Since p1c2l+1 ∈ Eb and pqc2t ∈ Eb, we have p1c2t /∈ Eb, p1c2t+1 /∈ Eb, ppc2l /∈ Eb and

ppc2l+1 /∈ Eb, otherwise a properly edge-colored cycle of length greater than m exists. Now we

consider the blue edges between {p1, c2t} and S
′
. By the definition of segments, vertex p1 can be

connected to the vertices c2l+1, c2l+3, c2l+5, · · · , c2t−5, c2t−3, c2t−1. However either p1ck ∈ Eb or

c2tck−1 ∈ Eb for each k = 2l + 3, 2l + 5, · · · , 2t − 3, 2t − 1, but not both. Otherwise the cycle

p1, p2, · · · , pq, c2t+1c2t+2 · · · c2lc2l+1c2l+2 · · · ck−2ck−1c2t c2t−1 · · · ckp1 has length greater than m, a con-

tradiction to the choice of C. So, db
S′

(p1)+db
S′

(c2t) ≤ s+2. Similarly, db
S′

(pq)+db
S′

(c2l+1) ≤ s+2. Now we

consider the blue edges between {p1, c2t} and P . Vertex c2t can not be connected with a blue edge to some

of the vertices p2, p4, · · · , pq, for otherwise the cycle pqc2t+1c2t+2 · · · c2lc2l+1 · · · c2t−1c2tp2s+1p2s+2 · · · pq (if

c2tc2s+1 ∈ Eb) has length greater than m. We also have either c2tpk ∈ Eb or p1pk+1 ∈ Eb, k = 2, 4, · · · , q−
2, but not both otherwise the properly edge-colored cycle pqc2t+1c2t+2 · · · c2lc2l+1 · · · c2t−1c2tpkpk−1 · · · p1pk+1pk+2 · · · pq

has again length greater than m. So, db
P (p1) + db

P (c2t) ≤ q. Similarly we have db
P (pq) + db

P (c2l+1) ≤ q.

Using these results in (1) we obtain db(p1) +db(pq) +db(c2l+1) +db(c2t) ≤ 2n < 2(n+ 1), a contradiction.

Subcase(b2). Either p1c2l+1 ∈ Eb or pqc2t ∈ Eb. Without loss of generality, we can assume that

p1c2l+1 ∈ Eb. In this subcase pqc2l /∈ Eb, pqc2l+1 /∈ Eb, p1c2t /∈ Eb and c2lc2t /∈ Eb. Otherwise we

may easily define a properly edge-colored cycle of length greater than m. But it may be possible that

p1c2t+1 ∈ Eb and c2l+1c2t+1 ∈ Eb. Similarly as in Subcase (b1) we have db
S′

(p1) + db
S′

(c2t) ≤ s + 3,

db
S′

(pq) + db
S′

(c2l+1) ≤ s + 2, db
P (p1) + db

P (c2t) ≤ q− 1, db
P (pq) + db

P (c2l+1) ≤ q. Using these results in (1)

we obtain db(p1) + db(pq) + db(c2l+1) + db(c2t) ≤ 2n < 2(n + 1), not possible.

Subcase(b3). Neither p1c2l+1 ∈ Eb nor pqc2t ∈ Eb. In this subcase it may be possible that p1c2t+1 ∈ Eb,
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pqc2l ∈ Eb, c2l+1c2t+1 ∈ Eb and c2tc2l ∈ Eb. Similarly as in Subcase (b1) we have db
S′

(p1) + db
S′

(c2t) ≤
s + 3, db

S′
(pq) + db

S′
(c2l+1) ≤ s + 3, db

P (p1) + db
P (c2t) ≤ q − 1 and db

P (pp) + db
P (c2l+1) ≤ q − 1. Using

these results in (1) we obtain db(p1) + db(pq) + db(c2l+1) + db(c2t) ≤ 2n < 2(n + 1), not possible. This

completes the proof of Case (b)

Case (c). There are at least two distinct segments on C. Let S1 : c2l+1c2l+2 · · · c2t−1c2t and

S2 : c2z+1c2z+2 · · · c2w−1c2w be two distinct segments of C. Let s1 and s2 denote their lengths, respec-

tively. Set S
′

1 = S1 ∪ {c2l, c2t+1} and S
′

2 = S2 ∪ {c2z, c2w+1}. The number of blue edges on the portion

C−S
′

1−S
′

2 on the cycle C is m−s1−s2−4
2 . So we have db

C−S
′
1−S

′
2
(p1)+db

C−S
′
1−S

′
2
(pq) ≤ m−s1−s2−4. Now,

the number of blue edges on the segment S1 is s1
2 −1 and the blue edges on the segment S1 are c2l+2c2l+3,

c2l+4c2l+5, · · · , c2l−4c2l−3, c2t−2c2t−1. By the definition of segment, vertex p1 may be connected with

blue edges to the vertices c2l+1, c2l+3, · · · , c2t−3c2t−1 on the segment S1. Also vertex pq may be connected

with blue edges to the vertices c2l+2, c2l+4, · · · , c2t−2c2t on the segment S1. For each blue edge ckck+1,

k = 2l + 2, 2l + 4, · · · , 2t − 2, on the segment S1, either p1ck+1 ∈ Eb or pqck ∈ Eb; but not both other-

wise we have a properly edge-colored cycle p1ck+1ck+2 · · · c2tc2t+1c2t+2 · · · c2lc2l+1 · · · ck−1ckpqpq−1 · · · p1

of length greater than m. Also we have either p1c2l+1 ∈ Eb or pqc2l ∈ Eb; but not both, otherwise

a properly edge-colored cycle of length greater than m exists. Also we have either pqc2t ∈ Eb or

p1c2t+1 ∈ Eb; but not both, otherwise a properly edge-colored cycle of length greater than m exists.

Using these results we conclude that db
S
′
1
(p1) + db

S
′
1
(pq) ≤ s1

2 + 3. Similarly for the segment S2, we have

db
S
′
2
(p1) + db

S
′
2
(pq) ≤ s2

2 + 3. Moreover, we have db
P (p1) + db

P (pq) ≤ 2q − 2 and db
R(p1) = db

R(pq) = 0. Also

s1 ≥ q and s2 ≥ q. By considering the above inequalities we obtain,

db(p1) + db(pq) = db
S
′
1
(p1) + db

S
′
1
(pq) + db

S
′
2
(p1) + db

S
′
2
(pp) + db

C−S
′
1−S

′
2
(p1) + db

C−S
′
1−S

′
2
(pq)

+ db
P (p1) + db

P (pq)

≤ m− s1 + s2

2
+ 2q

≤ m + q,

≤ n,

a contradiction.

Next we consider that n is odd. In this case we will show that graph Gc has properly edge-colored cycle

of order n− 1. Let C, P and R be defined as for n even. Assume by contradiction that C has length m,

dn
2 e+1 ≤ m ≤ n−3. If both edges p1p2 and pq−1pq have a same color, say red, then we may complete the

argument, as for n even. Assume therefore that edges p1p2 and pq−1pq have different colors, say c(p1p2)

is red and c(pq−1pq) is blue. Now, we can complete the proof by considering the path P
′

: p1p2 · · · pq−1

instead of P and then apply again all arguments used for n even. Hence the proof of Case (I)

Proof of (II). Let us consider the spanning subgraph H of Gc induced by all edges on two distinct

colors, say red and blue, i.e.,V (H) = V (Gc) and E(H) = Er(Gc) ∪ Eb(Gc). If n is even, then H has a

properly edge-colored red/blue hamiltonian cycle, thus the conclusion follows for Gc. Assume therefore

that n is odd. Again, by Case (I), there exists some vertex z in H such that H − z has a properly
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edge-colored red-blue cycle, say C : x1y1 · · ·xn−1
2

yn−1
2

spanning the n−1 vertices of H− z. Suppose that

all edges xiyi (modulo n−1
2 ) are red, while all other edges yixi (modulo n−1

2 ) of C are blue. Pick now any

red edge xiyi. Assume first that the number of red and , say green (i.e., any third color not used on the

cycle) edges between {xi, yi} and z is greater than or equal to 3. Then either the edge zxi is red and the

edge zyi is green or zxi is green and th e edge zyi is red. But either the cycle x1y1 · · ·xizyi · · ·xn−1
2

yn−1
2

x1

or the cycle y1x1 · · · yizxi · · · yn−1
2

xn−1
2

y1 is a properly edge-colored hamiltonian one. Assume therefore

that the number of red and green edges is less than or equal to two. Since there are n−1
2 red edges on

C, it follows that dr(z) + dg(z) ≤ 2n−1
2 = n− 1, a contradiction since dr(z) + dg(z) ≥ n + 1. Hence the

theorem.

Notice that the conditions of previous theorem are not far from being the best possible. Indeed, let

k and c be two arbitrary integers, k ≥ 1, c ≥ 2. Consider a multigraph on 2k + 1 vertices, consisting of

two c-edge-colored complete multigraphs each of order k + 1, having precisely one common vertex. Such

a graph has no hamiltonian cycle although its minimum colored degree is k(= n−1
2 ). In fact, we believe

that the following is true.

Conjecture 3.7. Statement of Theorem 3.6 remains true, if we replace dn+1
2 e by dn

2 e.

From Theorem 3.6 we obtain a series of corollaries for properly edge-colored hamiltonian paths.

Corollary 3.8. Let Gc be a c-edge colored multigraph, c ≥ 3. Assume that for each color i ∈ {1, 2, · · · , c}
and for each vertex x of Gc, di(x) ≥ dn

2 e. Then Gc has a properly edge-colored hamiltonian path.

Proof. Consider a new graph H obtained from Gc by adding a new vertex x and all possible edges

between x and Gc for each color i ∈ {1, 2, · · · , c}. Now it is not difficult to see that H satisfies all

conditions of Theorem 3.6 and therefore it contains a properly edge-colored hamiltonian cycle. Now a

hamiltonian path in Gc may be obtained by removing x from that hamiltonian cycle of H.

The conditions of previous corollary are not far from being best possible. This may be shown by

a multigraph on 2k vertices, consisting of two c-edge-colored complete multigraphs each of order k,

without common vertices. Such a graph has no hamiltonian cycle although its minimum colored degree

is k − 1(= n−2
2 ).

In next corollary we are interested for properly edge-colored hamiltonian paths with fixed end-points.

Corollary 3.9. Let x, y be two fixed vertices in Gc, c ≥ 2. Assume that ∀v ∈ V (Gc), di(v) ≥ dn+3
2 e for

each color i ∈ {1, 2, · · · , c}. Then Gc has a properly edge-colored hamiltonian path with endpoints x, y.

Proof. Assume first n is odd. Let H be a new 2-edge colored multigraph, on two colors red and blue,

obtained from Gc as follows. Concatenate x, y to a new vertex z in H, i.e., V (H) = V (Gc)−{x, y}∪{z}.
In addition, for each vertex w in V (Gc)−{x, y} add the edge wz in H if the edge wx (respectively wy) is

red (respectively blue) in Gc. Finally delete all edges in the subgraph induced by V (Gc)− {x, y} which
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are on colors other than red and blue. Now it is not difficult to see that H has n − 1 vertices and its

minimum colored degree is greater than or equal to dn+3
2 e−1 = d (n−1)+1

2 e. Thus it satisfies all conditions

of Theorem 3.6 and therefore it contains a properly edge-colored hamiltonian cycle. Now a hamiltonian

path between x and y in Gc may be obtained by deleting z on that hamiltonian cycle of H and replacing

it by x, y.

Assume next that n is even. Let now H be a new 2-edge-colored multigraph obtained from Gc by deleting

vertices x, y. Delete also all edges in Gc − x− y which are on colors other than red and blue. Then the

order of H is n− 2 and its minimum colored degree is dn+3
2 e − 1 = n

2 = n−2
2 + 1 = d (n−2)+1

2 e − 1. Thus

H has a properly 2-edge-colored hamiltonian cycle C. Set C : x1y1 · · ·xpypx1, where p = n−2
2 . Assume

without loss of generality that all edges xiyi (modulo p ) are red, while the remaining edges yixi (modulo

p) of C are blue. Pick a red edge xiyi and then observe that if the edge xxi (if any) is red, then the edge

yyi (if any) is not red. Otherwise the path xxiyi−1 · · · yiy should be the desired one. Similarly one of the

two edges yxi or xyi (if any) is not red. Thus, dr
{xi,yi}(x)+dr

{xi,yi}(y) ≤ 2. Since there are p such red edges

xiyi on C, it follows that dr
C(x) + dr

C(y) =
∑p (modulo p)

i=1 dr
{xi,yi}(x) + dr

{xi,yi}(y) ≤ 2p ≤ 2n−2
2 = n − 2.

However this is a contradiction, since dr
C(x)+dr

C(y) = dr(x)+dr(y)−dr
y(x)−dr

x(y) ≥ 2dn+3
2 e−2 = n+2.

The conditions of previous corollary are not far from being best possible. This may be shown by a

multigraph on 2k + 2 vertices, consisting of two c-edge-colored complete multigraphs each of order k + 2,

with precisely two common vertices x and y. Such a graph has no properly edge-colored hamiltonian

path with extremities x, y, although its minimum colored degree is k + 1. Also, it should be interesting

to study the questions of the above corollary in the case of edge-colored complete graphs. In particular,

the following problems seem interesting.

Problem 3.10. [6] Let x, y be two given vertices in a c-edge colored complete (multi)graph Kc
n, c ≥ 2.

Is there any polynomial algorithm for finding, if any, a properly edge-colored hamiltonian path between

x, y in Kc
n?

Problem 3.11. Let x be a given vertex in a c-edge colored complete (multi)graph Kc
n, c ≥ 3. Is there

any polynomial algorithm for finding, if any, a properly edge-colored hamiltonian path starting from x in

Kc
n such that the color of the first edge of this path is fixed ?

Problem 3.12. Let x, y be two given vertices in a c-edge colored complete (multi)graph Kc
n, c ≥ 2. Is

there any polynomial algorithm for finding, if any, a properly edge-colored hamiltonian path between x, y

in Kc
n such that the colors of the first or last edge (or of both first and last edges) of this path are fixed ?

In view of Theorem 3.14 below we establish the following lemma which could be of independent

interest.

Lemma 3.13. Let Gc be a c-edge colored multigraph, c ≥ 2. Assume that Gc contains a properly edge-

colored cycle C on two colors red and blue of length 2p < n. Assume furthermore that there exists a vertex

x in Gc − C such that (red/blue degrees) dr
C(x) > p and db

C(x) > p for c = 2, or (red/green degrees)
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dr
C(x) > p and dg

C(x) > p, for c ≥ 3.

i)If c = 2, then Gc has properly edge-colored cycles of all even lengths 2, 4, · · · , 2p through x.

ii)If c ≥ 3, then Gc has properly edge-colored cycles of all lengths 2, 3, 4, · · · , 2p + 1 through x.

Proof. Set C : x1y1 · · ·xpypx1. Assume without loss of generality that all edges xiyi (modulo p ) are

red, while the remaining edges yixi (modulo p) of C are blue. Define X = {xi|xi ∈ V (C)i = 1, 2, · · · , p}
and Y = {yi|yi ∈ V (C)i = 1, 2, · · · , p}. For two given colors s, t ∈ {r, b, g} , consider the degree-sum

ds
C(x) + dt

C(x) and rewrite it as ds
X(x) + ds

Y (x) + dt
X(x) + dt

Y (x) = ds
X(x) + dt

X(x) + ds
Y (x) + dt

Y (x). By

definition,

ds
X(x) + dt

X(x) + ds
Y (x) + dt

Y (x) > 2p (*) .

From (*), it follows that, either ds
X(x) + dt

X(x) > p or ds
Y (x) + dt

Y (x) > p. Assume without loss of

generality that

ds
X(x) + dt

X(x) > p (**)

Now we are ready to prove Cases (i) and (ii).

Proof of (i): Consider (**), by setting s = r (red) and t = b (blue). Thus dr
X(x) + db

X(x) > p. Assume

now by contradiction that for some even k, 2 ≤ k ≤ 2p, there exist no properly edge-colored cycle of

length k through x in Gc. This means that for any i = 1, 2, · · · , p (modulo p), going clockwise on the

cycle, if the edge xix (if any) is blue, then the edge xi+ k
2−1x (if any) is not red. Otherwise the cycle

xxiyi · · ·x k
2−1x should be properly edge-colored and of even length k, a contradiction to our assumption.

Thus, db
xi

(x)+dr
x k

2−1
(x) = 0 or 1. It follows that p < db

X(x)+dr
X(x) = Σp (modulo p)

i=1 db
xi

(x)+dr
x k

2−1
(x) ≤ p,

a contradiction. This completes the argument and the proof of this case.

Proof of (ii): Assume now by contradiction that for some integer k, 2 ≤ k ≤ 2p + 1, there exist no

properly edge colored cycle of length k through x in Gc. If k is even, then, complete the argument by

using arguments similar to those of Case (i). For k odd, it follows from (*) that, either dr
X(x)+dg

Y (x) > p

or dr
Y (x) + dg

X(x) > p. Assume without loss of generality that dr
X(x) + dg

Y (x) > p. Going anti-clockwise

on the cycle, observe that for any i = p, p−1, · · · , 2, 1 (modulo p), if the edge xix (if any) is blue, then the

edge yi−b k
2 c

x (if any) is not red. Otherwise the cycle xxiyi−1 · · ·xi+1−b k
2 c

yi−b k
2 c

x should be a properly

edge-colored one of length k, a contradiction to our assumption. Thus, dr
xi

(x) + dg
y

i−b k
2 c

(x) = 0 or 1. It

follows that p < dr
X(x) + dg

Y (x) = Σp (modulo p)
i=1 dr

xi
(x) + dg

y
i−b k

2 c
(x) ≤ p, a contradiction. This completes

the argument and the proof of this lemma.

In next theorem, we go further by showing that under the conditions of Theorem 3.6, Gc has cycles

of many lengths.

Theorem 3.14. Let Gc be a c-edge colored multigraph, c ≥ 2. Assume that ∀x ∈ V (Gc), di(x) ≥ dn+1
2 e

for each color i ∈ {1, 2, · · · , c}.
i)If c = 2, then Gc is even-pancyclic.

ii)If c ≥ 3, then Gc is pancyclic.
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Proof. Assume first that n is odd. Using Theorem 3.6 we conclude that Gc has a properly edge-

colored cycle C of length n− 1 with two colors, say red and blue. Let x be the vertex Gc not included

in C. Now, by considering x and C, it is an easy exercise to see that all conditions of Lemma 3.13 are

full filled, so the conclusion follows.

Assume next that n is even. Pick any vertex x and consider the graph H ∼= Gc − x. Since n is even, the

order of H, i.e. the number n−1, is odd. Furthermore the minimum colored degree of any vertex in H is

greater than or equal to dn+1
2 e− 1 = n

2 + 1− 1 = n
2 = (n−1)+1

2 = d (n−1)+1
2 e. It follows from Theorem 3.6

that H has a properly-edge colored cycle C of length n−2. Using this fact and Lemma 3.13 we complete

the argument, since any i-colored degree of x on C satisfies di
C(x) ≥ dn+1

2 e − 1 ≥ n
2 > n−2

2 . Hence the

theorem.

Notice that degree conditions of Theorem 3.14 cannot be relaxed as shown by the edge-colored com-

plete bipartite multigraph Kc
n
2 , n

2
. Although, such a graph has minimum colored degrees n

2 , it has no cycles

of odd length. Notice also that case c = 2 cannot be considered for pancyclicity, since a 2-edge-colored

graph has no properly edge-colored cycles of odd length.

We conclude this section with the following result on edge-colored random multigraphs.

Theorem 3.15. Let C denote a sufficiently large constant and let G(b) = G(b)(2n, p), G(r) = G(r)(2n, p)

be two independent random graphs on the same vertex set V = {1, 2, ..., 2n} and with the same edge

probability p = Cn−1 log n. The edges of G(b) are colored blue, and the edges of G(r) are colored red.

Then, with probability tending to 1, as n tends to infinity, the random multigraph G = G(b) ∪ G(r) has a

properly edge-colored hamiltonian cycle.

Proof. By a known result (see Theorem 24, page 167 in [7]), for sufficiently large C, the graph G(b)

has a perfect matching with probability tending to 1. Let such a perfect matching be {{2k + 1, 2k + 2} :

0 ≤ k ≤ n − 1}. We will prove that the G contains a properly edge-colored hamiltonian cycle which

uses all the edges {2k + 1, 2k + 2} in the direction 2k + 1 → 2k + 2. Clearly the remaining edges of

that cycle will be red. For this, let us consider the directed graph D = (V (D), A(D)) with vertex set

V (D) = {v1, v2, ..vn} and A(D) defined as follows: For each 0 ≤ k < ` ≤ n− 1, we do the following:

- The arc (vk, v`) ∈ A(D) if and only if the edge {2k + 2, 2`} ∈ G(r).

- The arc (v`, vk) ∈ A(D) if and only if the edge {2k + 1, 2` + 2} ∈ G(r). Note that, conditionally on

the pairing, D is independent of G(b). Now assume that D has an hamiltonian circuit, say vi1 , vi2 , ..., vin
.

Clearly, replacing each vertex vij
by the edge (2ij + 1, 2ij + 2) gives an hamiltonian properly edge-

colored cycle of G. Thus we are only left with the task of asserting that D has an hamiltonian circuit,

with high probability. But the arc probabilities in D are exactly the edge probabilities in G(r). Again,

it is a standard result that a random directed graph with arc probabilities Cn−1 log n has a hamiltonian

circuit with high probability for large C [2]. Thus the assertion is true and the theorem is proved.
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4 Conclusion

This paper is the result of persistent effort at systematising results on properly edge-colored paths and

cycles by drawing upon anologous theorems from uncolored graphs. Although some notion of connectivity

in edge-colored graphs have already been known (see, e.g. Chapter 11 in [3]), in the absence of a

counterpart to Menger’s theorem and network flow theory, the task may seem daunting at first, perhaps

even beyond reach. Yet the results are surprinsingly consistent with their counterparts from Graph

Theory. It seems as though we can phrase the same theorems in their properly coloring versions and get

valid theorems, except for the notable fact that the proofs are sometimes long and tedious and the work

to get them is fraught with intricacies and unsuspected difficulties. In the final analysis, it is remarkable,

in our view, that such a theorem as Dirac’s [9], should carry over, almost word for word, to the case

mentioned in this paper. The proofs, albeit difficult, rely on little more than the pigeonhole principle

and, in some important instances, on matching theory and related subjects.

The paper is sprinkled throughout with numerous conjectures of our own devising, which bears witness

to the liveliness of this line of research. On the subject of conjectures, we would like to record our

recognition of the contribution of both referees for promptly (almost on the fly, as it were) pointing out

that two of the conjectures that appeared in an earlier version of this paper were false, as they pointed to

counter-examples to that effect. In fairness to the unknown referees then, we present the two conjectures

along with some references to the counter-examples that served to disprove them:

Conjecture 4.1. Let Gc be a c-edge colored graph, c ≥ 2, such that for every vertex x, di(x) ≥ d ≥ 1,

i ∈ {1, 2, · · · , c}.
i) If c = 2, Gc has a properly edge-colored cycle of length 2d.

ii)If c ≥ 3, Gc has a properly edge-colored cycle of length cd + 1.

Conjecture 4.2. Every c-edge-colored multigraph Gc, c ≥ 2, with minimum colored degree d has :

i) a properly edge-colored cycle of length d + 1 unless c = 2 and Gc ∼= Hs in which case Gc has a cycle of

length d and

ii) a properly edge-colored path of length min{n− 1, 2d}

Published counter-examples are found in [11], where it is proved that there exist edge-colored graphs

with minimum colored degrees d and without properly edge-colored cycles.
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