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1 Introduction

The study of problems modeled by edge-colored graphs has given rise to impor-
tant developments during the last few decades. For instance, the investigation
of spanning trees for graphs provide important and interesting results both
from a mathematical and an algorithmic point of view (see for instance [1]).
From the point of view of applicability, problems arising in molecular biology
are often modeled using colored graphs, i.e., graphs with colored edges and/or
vertices [6]. Given such an edge-colored graph, original problems translate to
extracting subgraphs colored in a specified pattern. The most natural pat-
tern in such a context is that of a proper coloring, i.e., adjacent edges having
different colors. Refer to [2,3,5] for a survey of related results and practi-
cal applications. Here we deal with some colored versions of spanning trees
in edge-colored graphs. In particular, given an edge-colored graph Gc, we ad-
dress the question of deciding whether or not it contains properly edge colored
spanning trees or rooted edge-colored trees with a given pattern.

Formally, let Ic = {1, 2, . . . , c} be a given set of colors, c ≥ 2. Throughout,
Gc denotes an edge-colored simple graph, where each edge is assigned some
color i ∈ Ic. The vertex and edge-sets of Gc are denoted V (Gc) and E(Gc),
respectively. The order of Gc is the number n of its vertices. A subgraph of
Gc is said to be properly edge-colored if any two of its adjacent edges differ in
color. A tree in Gc is a subgraph such that its underlying non-colored graph
is connected and acyclic. A spanning tree is one covering all vertices of Gc.
From the earlier definitions, a properly edge-colored tree is one such that no
two adjacent edges are on a same color. A tree T in Gc with fixed root r is
said to be weakly properly edge-colored if any path in T , from the root r to
any leaf is a properly edge-colored one. To facilitate discussions, in the sequel
a properly edge-colored (weakly properly edge-colored) tree will be called a
strong (weak) tree. Notice that in the case of weak trees, adjacent edges may
have the same color, while this may not happen for strong trees. When these
trees span the vertex set of G, they are called strong spanning tree (sst) and
weak spanning tree (wst).
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Here we prove that the problems of finding sst and wst in colored graphs
are both NP-complete. The problem of sst remains NP-complete even when
restricted to the class of edge-colored complete graphs. We present nonapprox-
imability results by considering the optimization versions of these problems.
We provide polynomial time algorithms for these problems on the important
class of colored acyclic graphs, i.e. graphs without properly edge-colored cy-
cles. We also present an interesting graph theoretic characterization of colored
complete graphs which have ssts.

2 NP-completeness and nonapproximability

The sst problem is NP-complete for Gc if c is a constant, because it generalizes
the degree-constrained spanning tree problem, which extends the Hamiltonian
path problem. Here, the degree constraint of a node v is the number of different
colors used on its incident edges. The next result is a stronger one, and is
proved using a kind of self-reduction from the sst problem on a constant
number of colors.

Theorem 2.1 The sst is NP-complete even for c = Ω(n2).

The hardness result for wst stated below is obtained by a reduction from the
3-sat problem.

Theorem 2.2 Given a 2-edge colored graph Gc = (V,Ec) and a specified
vertex r of V , it is NP-complete to determine if Gc has a wst rooted at r.

We view the optimization versions of these problems as finding the corre-
sponding trees covering as many vertices as possible. The following results on
nonapproximability bounds are obtained by the gap-reduction technique using
the max-3-sat problem.

Theorem 2.3 The maximum weighted tree (mwt) problem is nonapprox-
imable within 63/64 + ε for ε > 0 unless P = NP .

Theorem 2.4 The maximum strong tree (mst) problem is nonapproximable
within 55/56 + ε for ε > 0 unless P = NP .

3 Colored trees in acyclic edge-colored graphs

In this section, we present results demonstrating that the sst and wst prob-
lems can be solved efficiently when restricted to the class of edge colored-
acyclic graphs. We present a proof sketch and an algorithm for the sst prob-
lem on colored acyclic complete graphs. The case of sst on general colored
acyclic graphs is similar, but more involved and appears in a longer version of
the paper. We do not provide the details of the wst problem either, due to
space constraints.

An important tool we use is a theorem due to Yeo ([7],[4]), which states that
every colored acyclic graph has a vertex v, such that the edges between any
component Ci of G \ v and v are monochromatic. We call such a vertex a
yeo-vertex. If in addition, the colors of the edges between v and the various
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components obtained by deleting it are all distinct, we call it a rainbow yeo-
vertex. It is easy to see that a colored acyclic graph with a nonrainbow yeo-
vertex has no sst.

For the rest of this section, we assume we are dealing with colored acyclic
complete graphs (Kc

n-acyclic). We compute a partial ordering of the vertices
and construct the sst by incorporating the vertices in the reverse of this
order. The first block consists of all the yeo-vertices of the graph. They induce
a monochromatic clique and the edges between this group of vertices and the
rest of the graph are also monochromatic with the same color. We repeat this
procedure iteratively, by considering the residual (also) acyclic complete graph
obtained by deleting these vertices from the original graph. The second block
is also monochromatic but with a different color.

We use k to denote the number of blocks in the above partial order and the
blocks themselves are denoted B1, . . . ,Bk. We use ci to denote the associ-
ated color of block Bi. Recall that the color associated with successive blocks
differ. We denote the total number of vertices in the blocks Bi, . . . ,Bk by
ti and the number of such vertices whose associated color is l by tli. We now
state a lemma, which given an acyclic edge colored complete graph determines
whether or not it contains an sst.

Lemma 3.1 (SST-Complete Acyclic) An acyclic edge colored complete graph
has an SST iff

(1) Last block Bk has two vertices, and
(2) for each i < k,
• IF block Bi has the same color as the last block Bk, THEN
tci
i − 2 ≤ ti

2
.

• ELSE tci
i ≤ ti

2
.

We now describe our algorithm to construct the SST. It is based on the previ-
ous lemma. Its running time is O(n2), as it can be implemented by modifying
the basic Breadth-First-Search (bfs) procedure.
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Algorithm 1. sst for Kc
n-acyclic

1: compute the order described above
2: if last block Bk has more than two vertices then return “No sst”
3: if last block Bk has two vertices then connect the two vertices of Bk to

get an initial Strong Tree
4: for i = k − 1 to 1 do
5: if condition 2 of Lemma 3.1 is true then
6: join the vertices of Bi as leaves, to distinct vertices already incorpo-

rated in the tree which have not used an edge of color ci in the partial
strong tree obtained in the previous iteration.

7: else
8: return ”NO SST”
9: end if

10: end for
11: return the SST

To conclude this section, we now state our more general result.

Theorem 3.2 The sst and wst problems can be solved efficiently for acyclic
colored graphs.

4 Properly edge-colored spanning trees in edge-colored complete
graphs

The sst problem remains hard even when stringently restricted, as the follow-
ing result states. The hardness is proved by a reduction from the sst problem
in general graphs.

Theorem 4.1 The sst is NP-complete for complete graphs Kc
n, colored with

|c| ≥ 3 colors.

Observe, that for the case c = 2, the sst problem reduces to the Hamilto-
nian Path problem, which is known to be polynomial [3]. Notice also that the
wst problem is trivial in Kc

n as any spanning star is a wst. Concerning sst,
we provide below a graph-theoretic characterization for edge-colored complete
graphs Kc

n which have ssts. This characterization is interesting from a math-
ematical point of view, but the implied conditions cannot be computed in
polynomial time, in view of the hardness result above.

Theorem 4.2 Assume that the vertices of Kc
n are covered by a strong tree

T and a set of properly edge-colored cycles, say C1, C2 · · · , Ck all these com-
ponents being pairwise vertex-disjoint in Kc

n. Then Kc
n has a strong spanning

tree.
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