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FATIHA ZAIDI, Université Paris-Sud, LRI UMR 8623

Wireless self-organizing networks (WSONs) have attracted considerable attention from the network research
community; however, the key for their success is the rigorous validation of the properties of the network
protocols. Applications of risk or those demanding precision (like alert-based systems) require a rigorous
and reliable validation of deployed network protocols. While the main goal is to ensure the reliability of
the protocols, validation techniques also allow the establishment of their correctness regarding the related
protocols’ requirements. Nevertheless, even if different communities have carried out intensive research
activities on the validation domain, WSONs still raise new issues for and challenging constraints to these
communities. We thus, advocate the use of complementary techniques coming from different research com-
munities to efficiently address the validation of WSON protocols. The goal of this tutorial is to present a
comprehensive review of the literature on protocol engineering techniques and to discuss difficulties im-
posed by the characteristics of WSONs on the protocol engineering community. Following the formal and
nonformal classification of techniques, we provide a discussion about components and similarities of existing
protocol validation approaches. We also investigate how to take advantage of such similarities to obtain
complementary techniques and outline new challenges.
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1. INTRODUCTION

1.1. Context

“It is not the biggest nor the fastest of the species that survive, but the one that adapts to its environment.”
(Charles Darwin, Theory of Evolution, 1809–1882).

Nature is full of interesting examples of systems with self- (self-configuration, self-
organization, etc.) properties, constituting a valuable source of inspiration for the
engineering of fully autonomous formation of networks. In addition, advances in com-
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munication technologies and the proliferation of wireless computing and communica-
tion devices are opening new ways for mobile users to get connected to each other.
As a consequence, autonomic networks have emerged with the goal of relying on pro-
cesses of evolution, development, self-organization, adaptation, learning, teaching, and
goal orientation. This futurist goal can be represented by the design of multihop wire-
less self-organizing networks (WSONs) that are able to robustly respond to dynami-
cally changing environments, operating conditions, and purposes or practices of use,
thus facilitating new ways to perform network control, management, and service cre-
ation. Wireless networks such as sensor networks, mesh networks, vehicular networks,
delay-tolerant networks, and MANETs are some examples of networks that follow the
principle of WSONs.

Over the last number of years, multihop wireless networking area has thus attracted
considerable attention within both industry and academia. One reason for this popular-
ity is the wide range of novel applications in the areas of health, military, environment,
and home. The requirements of such applications have, however, a direct impact on
the design of the wireless network. In military areas, for instance, rapid deployment,
self-organization, and fault tolerance characteristics are required. In environmental
areas, reliability, fault tolerance, and robustness are important issues, and constitute
fundamental characteristics, for instance, in alert-based monitoring applications.

Hence, it can be easily concluded that the success/quality of those applications is
then strongly related to the correctness and good performance of the involved network
protocols. In particular, safety-critical applications (like healthcare-related or alert-
based systems) require a rigorous and reliable validation of all network functionalities
and features.1 In addition to threatening people’s lives, faulty software has a financial
impact. The fact that people rely on computers in practically every aspect of their
lives (e.g., in cars, ATMs, cell phones, etc.) makes higher the cost of unreliable design
[Hoffman 2008].

1.2. Motivation

Many efforts have been performed in order to validate the requirements and the func-
tioning of protocols in such kinds of networks. While the main goal is to ensure the
reliability of the protocols, validation techniques also allow the establishment of their
correctness with respect to the related requirements. In particular, the properties to be
validated are related to behavioral aspects, which are commonly known as functional
or qualitative (e.g., protocol interactions, or loop free) and nonfunctional or quantita-
tive properties (e.g., performance-related issues, like latency, delivery ratio, etc.). In
this way, validation techniques have been studied by the research community through
different approaches. In particular, functional and/or nonfunctional properties have
been validated by the use of formal or nonformal approaches.

In the multihop wireless networking area, the major techniques used to design and
ensure the quality of the network-related protocols essentially rely on descriptions
for simulation and/or emulations, even if some works put also trust in mathemati-
cal models for the understanding of systems’ behavior. More specifically, the majority
of works rely on nonformal models provided as input to simulators such as NS-2,2
OPNET,3 or GloMoSim.4 In this case, simulation is usually conceived to observe and
analyze the protocol performance. Nevertheless, works in the literature [Cavin et al.
2002; Kurkowski et al. 2005; Andel and Yasinsac 2006] have shown that there are

1Here reliability means that all the application’s behaviors are correct against all specified criteria.
2Network Simulator www.isi.edu/nsnam/ns.
3OPNET Simulator. www.opnet.com.
4Global Mobile Information Systems Simulator. pcl.cs.ucla.edu/projects/glomosim/.
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growing concerns regarding the reliability of results generated by wireless network
simulators. In addition, they have also discussed the scarcity of results gotten from
real experiments [Abdesslem et al. 2007] and the huge diversity of results from simu-
lation when compared to the ones from real case studies. Otherwise, even if emulation
testing (TinyOS Simulation, or TOSSIM5; WSim6) comes closer to the reality, the sim-
ulation test is still required and represents an important component in the emulation
testing. Hence, the combination of simulation and emulation techniques is not still
enough to replace a real case study [Bhargavan et al. 2002a]. Finally, although use-
ful for evaluating nonfunctional properties of protocols, such techniques do not allow
one to discern design errors or define automation of well-defined processes, important
issues for evaluating the functional behaviors of protocols.

Recently, some works in the literature have then advocated the use of formal models
to test WSON routing protocols [Engler and Musuvathi 2004; Fernández-Iglesias et al.
2005; Fehnker et al. 2007], as a way to deal with the previously described constraints of
nonformal models. Verification and testing are two complementary stepwise techniques
for formal protocol validation. The verification technique consists in a formal modeling
of the protocol in order to verify some of its properties.7 Otherwise, testing techniques
work on implementations rather than models. In this way, test sequences generated
from the formal model are injected into the final implementation of the protocol. This
will allow the comparison between the real results and the expected results provided
by the specification.

Nevertheless, formal description techniques and their testing tools have not fre-
quently been applied in the multihop wireless networking area. This is mainly due to
the difficulties that characteristics of WSONs impose to the formal modeling [Wibling
2005; Fernández-Iglesias et al. 2005]. In particular, as discussed later in this arti-
cle, WSONs present a number of characteristics that set them apart from traditional
wired networks, as the network dynamicity or the inherently broadcast communica-
tion. Thus, even if different communities have carried out intensive research activities
on the validation domain, WSONs still raise new issues and challenging constraints
to these communities. One example is the scalability issue. In the validation-related
works concerning WSONs, the considered network size remains small (e.g., five nodes
in de Renesse and Aghvami [2004], or 18 nodes in Fernández-Iglesias et al. [2005]).
This is due to the dynamicity imposed by WSONs, which highly increases the number
of states to be considered in the validation process.

1.3. Contribution

According to the literature and similarly to researches on the validation area of wired
networks, it has been well established that the validation of WSONs protocols may not
be addressed by only one method, i.e., formal or nonformal [Fehnker et al. 2007]. This
specifically suggests the integration of formal and nonformal approaches, which still
constitutes an open issue in the protocol validation domain.

Following this assumption, it can be observed that similarities can be established
between formal and nonformal approaches in terms of techniques and properties to
be validated. In this way, we argue that the use of complementary techniques coming
from different research communities can help to efficiently address the new constraints
imposed by WSONs.

5www.cs.berkeley.edu/pal/research/tossim.html.
6WSim Simulator. worldsens.citi.insa-lyon.fr/joomla/index.php.
7In routing protocols, formal models may check the loop free property of established routes or still the rapid
convergence of routes changes.
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The goal of this survey is to present a comprehensive review of the literature on
protocol engineering techniques and to discuss the challenges imposed by WSONs to
the protocol engineering community. Our aim is to provide a better understanding of the
current research issues in this field. Following the formal and nonformal classification
of techniques, we provide an overview of protocol validation approaches, investigate
their design features and constraints, and discuss their similarities. We also investigate
how to take advantage of such similarities to obtain complementary techniques.

The scope of the work presented in this article is distinguished in many aspects from
existing surveys on validation techniques [Curren 2005; Holzmann 1991]. In particular,
our work differs from other surveys as follows.

—In general, the literature presents a collection of validation-related works that are
adapted to a particular type of problem (e.g., leader election, or a specific routing
protocol). Instead, our goal is to help the reader understanding the foundations of
validation techniques. In this way, we survey both formal and nonformal valida-
tion approaches and discuss their limitations and drawbacks. We then examine the
attempts of convergence addressed in the literature.

—The related surveys in the literature are devoted to wired networks only. Due to the
importance of WSON and its new challenging characteristics, a detailed discussion
on the changes introduced to the protocol engineering domain becomes necessary and
useful at this stage. Thus our work is also a dedicated study of the particularities
introduced by multihop wireless networks. In addition, we investigate how validation
techniques have been rethought to allow the application to WSONs.

—Finally, we discuss open research problems. We believe the provision of more general
insights across the validation techniques is an interesting direction through the
design of novel validation techniques adapted for WSONs.

1.4. Outline

The remainder of this survey is organized as follows. We start our analysis by providing
in Section 2 an overview of the protocol engineering domain. In Section 3, we discuss
the new challenges introduced by the wireless self-organizing networks that impose
limitations to existing validation techniques. In Sections 4 and 5, we examine in detail
the formal and nonformal approaches used in the protocol engineering domain. We
then survey concepts and discuss the methods used in each approach. Section 6 pro-
vides a discussion about the advantages and drawbacks of those approaches regarding
WSON validation. Section 7 examines the demands for convergence between formal
and nonformal domains and discusses the interest in this convergence, in dealing with
the characteristics of WSONs. Finally, Section 8 summarizes our investigations and
presents our conclusions.

2. PROTOCOL ENGINEERING

The protocol engineering domain covers a large range of activities, from the require-
ment specification to the final deployment, passing through the design phase. There
exists in the literature several way to perform the development of a protocol. All these
processes of development share a common starting point.

The design and the validation of a protocol are preceded by the specification of its
rules and format of messages. Messages allow the establishment of communication
between entities in a distributed system. In this way, once primitives, data units, and
communication rules are defined, the protocol’s lifecycle can be then started. This con-
sists in the execution of three main phases: the development, the exploitation (i.e. final
deployment), and the maintenance (see Figure 1). This article addresses the develop-
ment phase, important to ensure the correct design of a protocol to be deployed and
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Fig. 1. Protocol lifecycle.

maintained in a real environment. The development phase can be proceed according
to several models: the Waterfall [Royce 1987], V-model [Vliet 1999], spiral [Boehms
1988], prototyping, RAD [Martin 1990], and RUP [Jacobson et al. 1999] models. More
specifically, protocol lifecycles can be divided into two mains classes: the linear and
the iterative lifecycles. The Waterfall and the V-model are known as linear lifecycles.
The name Waterfall [Royce 1987] derives from the cascading effect existent between
the steps. When this model is used, no intermediate evaluation is performed between
the starting point of the project and the validation step. Hence, this lack of interme-
diate evaluation has as consequence the fact that no way to follow the development
process exists and then no means to organize a work within a team is available. Such a
model increases the risk of having errors in the system due to the late validation step.
Although being the least flexible, the Waterfall model is well suited for projects with
few participants and when the risks are well determined from the starting point of the
project.

The second linear model, the V-model [Vliet 1999], where formal methods are used, is
the most famous model, being often used in big projects. For these reasons, we selected
the V-model as the model of the development phase of a protocol lifecycle to be detailed
in the following section. The main advantage of such a model relies on a model driven
by documentation which is produced at every step of the protocol lifecycle. The risks of
building a wrong system are also reduced as a validation is performed at each step. On
the other hand, the weaknesses of this model may be also related to the documentation
if all the attention is only concentrated on the production of this one without thinking
of the main objective, that is, the protocol development. The intermediate validations
cannot prevent the transmission of deficiencies caused by the previous steps of the
lifecycle.

In the family of iterative models, we can cite the prototyping and spiral models
[Boehms 1988]. The former model is a cyclic version of the linear model. In this model,
once the requirement analysis is done and the design for a prototype is made, the
development process gets started. Once the prototype is created, it is given to the
customer for evaluation. The customer’s response creates the next level of requirements
and defines the next iteration. The main strengths are that the users can see steady
progress, the feasibility of a proposed design approach can be examined, and system
performance issues can be then explored. The drawbacks are caused by the possibility
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for the users to treat the prototype as the solution and because of the fact that a
prototype is only a partial specification. Moreover, with such a model, there is no way
to know the number of iterations that will be required. On the other hand, the spiral
mode consists of a risk reduction by breaking a system project into miniprojects, each
one addressing one or more major risks. After major risks have been addressed, the
spiral model ends up as a Waterfall model. The strengths are on the early iterations,
which are the cheapest and enable the higher risks to be addressed at the lowest total
cost. In this way, the iterations can be tailored in an efficient way to fit the project’s
needs. The weaknesses have to do with the ability to make it in practice as it requires
attentive management knowledge.

Other models exist such as the RAD model (Rapid Application Development) [Martin
1990], which is a linear sequential model that emphasizes an extremely short develop-
ment cycle that relies on a component-based construction, and the RUP model (Rational
Unified Process) [Jacobson et al. 1999], which is related to the spiral model and has an
underlying object-oriented model. We can also mention the agile methodologies, which
are based on an iterative process. Interested readers can refer to Jeffries and Ambler
[2002].

To conclude, no lifecycle model is perfect and the choice of the right model is really
dependent on the system to be developed and on the tradeoffs to be found between
all the parameters considered in the system development phase, such as size project,
development team size, etc. (see Vliet [1999], Chapter 3, for a good overview of lifecycle
models). As stated before, we describe in the following the V-model in detail, where
the development is performed in several steps, having at each step a validation pro-
cess and an associated technical report. These steps are shared by several lifecycle
models.

2.1. Protocol Development Phase

A protocol development cycle is divided into several steps, which are detailed in this
section. The first step captures the requirements of the user or application in terms of
available and requested services. This constitutes a high-level task, since no specifica-
tion of how the system internally works is required. Instead, this first step specifies
how the system reacts to interactions coming from the environment. Traditionally and
especially in the formal-related area, the requirements are expressed by sequence di-
agrams, called message sequence charts [ITU-T 1996], which represent the exchanges
of interactions between the different entities of the system and its environment.

The second step designs the protocol in terms of data structures and data units
exchanged to manage the timing constraints (i.e., the management of timers). More
specifically, the design of a protocol relies on the available service to supply the re-
quested service. The protocol design can be performed by means of formal approaches,
as system modeling methods or formal description techniques (FDT), or directly by
nonformal description techniques.

An FDT builds a formal model of the protocol that can be used for several purposes,
such as formal verification or formal validation of users’ requirements, as well as to
generate the tests to be executed on the real implementation. The use of an FDT
allows checking the correctness of the protocol regarding its expected behavior (see
Section 5).

Verification and validation (or testing) are complementary techniques for formal pro-
tocol description. At the verification step, properties related to the service and those
related to the protocol can be verified. If the service-related properties are verified
on the model, it can be then established that the model is correct regarding what
the system is expected to do, for example, if a route between two nodes can be cor-
rectly established. Protocol-related properties are verified on the model in order to
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Fig. 2. General classification of protocol design approaches.

establish that the model is free of deadlocks, livelocks, etc. After the protocol verifi-
cation is concluded (i.e., it is correct and corresponds to the specified requirements)
then, from the correct model, test cases that cover test objectives can be automatically
generated.

Finally, the V-model cycle of a protocol is finished by its implementation. If a for-
mal description was adopted in the previous steps, the implementation can be directly
generated from the formal model. There exist many code generators from formal mod-
els; however, the code generated is not complete and needs to be finalized. The tests
automatically generated from the formal model can then be exercised on the final
implementation to check whether the implementation conforms to its specification.

Performance analyzers are actuated after the design phase. With formal approaches
(such as the system modeling methods described in Section 5.1) or with nonformal
approaches (such as simulation, emulation, real-live testing, and prototyping, described
in Section 4), the issue to be addressed is the performance evaluation of the developed
protocol. In the realm of performance evaluation, the previous steps of requirement
and design specifications are also important steps to be performed. Nevertheless, the
requirements are expressed by means of scenarios directly produced from the informal
description of the protocol. In the case of some nonformal approaches, for example, these
scenarios are scripts to be executed on the simulated or emulated protocol. The protocol
is then implemented inside the simulator/emulator according to the data structures
and algorithms established at the design phase.

In summary, the design phase of the protocol engineering domain is addressed in this
article by two different approaches: the formal and the nonformal. Approaches based
on well-founded semantics, such as methods based on formal description techniques
and on system modeling methods, are studied in this article as formal approaches.
Otherwise, techniques like simulation, emulation, real world testing, and prototyping
are studied as nonformal approaches. Formal and nonformal approaches are comple-
mentary techniques to be used in the development of new protocols.

Figure 2 presents the general taxonomy of the protocol development approaches. A
survey of nonformal and formal approaches as well as a discussion of their strengths
and weaknesses is provided in the following sections. Moreover, in order to better
investigate their characteristics when compared to their use in the wired network
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area, the next section first describes the new challenges imposed by WSONs that affect
the way protocols should be designed.

3. THE WSONS CHALLENGES

Wireless self-organizing networks introduce new challenges to the project engineering
research community. This is due the fact that they present radically different technical
characteristics that set them apart from wired networks. In the following, we describe
the particularities of these networks. Sections 6 and 7 then discuss the difficulties
imposed by the new challenges of WSONs and how validation techniques have been
rethought to be applied in WSONs.

—Broadcast communication. Unlike in wired network, where the point-to-point model
of communication is dominant, communication in wireless networks is inherently
broadcast based. That is, when a node transmits some information, typically all
nodes within its transmission range can receive it. The broadcast nature of wireless
communication can be exploited in a number of applications, including information
dissemination.

—Communication paths determined by physical location. Due to the wireless link prop-
erties of WSONs, neighborhood is imposed by the physically location of nodes. Nodes
should then rely on their physically immediate neighbors for communication.

—Links are unreliable. Variables such as obstructions, interference, environmental
factors, and mobility make determining connectivity a priori difficult in WSONs. Also,
contrary to wired networks, in which the channel can be characterized reasonably
well, much more unpredictability is expected in the wireless case. Thus, the low link
reliability and its possible asymmetry require that protocol designed for WSON be
fault tolerant and adaptable to connectivity changes.

—Collision. Contrary to wired networks, collision detection is not feasible in WSONs
and collision avoidance is hard to achieve. Thus links may suffer a much higher
percentage of message loss through collisions.

—High heterogeneity. In WSONs, it is likely that nodes are heterogeneous in their
characteristics such as memory availability, computation capacity, and transmitting
power.

—Potentially high mobility. Due to the absence of wiring, nodes in WSONs can be
mobile. It has been shown in the literature that node mobility is favorable to the
spread and/or aggregation of information through the network [Grossglauser and
Tse 2002; Benbadis et al. 2005; Vahdat and Becker 2000]. On the other hand, node
mobility also imposes changes on the topology. This dynamic topology, in turn, im-
plies more complex management algorithms for topology maintenance and routing.
For instance, the dynamic nature causes routes to be unstable and make routing a
resource-greedy operation. In this way, in order to have flexibility in route selection
and simpler dynamic-network management, the designed addressing structure and
forwarding mechanisms should be as flexible as possible.

—Constrained resources. Due to the absence of wiring and their small physical size,
wireless devices often have limitations in memory, processing, and above all power.
In this case, the optimization of resources is strongly required in order to minimize
energy consumption and communication overhead. This also requires (1) taking local-
scoped decisions through simple neighborhood consensus, and (2) the distribution of
information and management responsibilities among the nodes in the network.

—Vulnerability. Due to their infrastructure-free and nonauthority capabilities, WSONs
are inherently insecure. In addition, transmissions are generally in broadcast mode,
which makes traffic overhearing easier for any node.
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4. NONFORMAL APPROACHES

In the network community, the major techniques used to debug and evaluate designed
network protocols rely on nonformal approaches such as simulation and emulation
tools, as well as live-testing experiments (real testbeds) and rapid prototyping. In the
wireless network domain in particular, the advantages in hardware development have
made possible the deployment of inexpensive, autonomous, and compact sensor devices,
which has improved the viability of deploying live-testing experiments of wireless
sensor networks [Xu et al. 2004].

Otherwise, the choice of a simulator or an emulator is up to the designer. If having a
high view of one idea is enough to evaluate its performance (e.g., reliability of routing
protocol, zone coverage guarantees, etc.), the simulation will be the more useful tool.
If, however, a fine-tuning precision of low level-results is required (e.g., precise timing
analysis of the simulated software, etc.), then the emulation will be the more effective
tool.

It the following, we discuss each of these widely employed nonformal approaches.
Notice, however, that our goal here is to provide discussion about the concept and
characteristics of nonformal approaches, instead of surveying techniques existing in
the literature for each approach. Although the discussions will be focused on sensor
networks, a good survey of simulation tools can be found in Curren [2005].

4.1. Simulation

Simulation plays a valuable role in network research, allowing designers to test net-
working protocols in a controlled and reproducible environment. Simulations are often
used as an adjunct to, or substitution for, modeling systems for which simple closed-
form analytic solutions are not possible. In the wireless network domain, simulation
constitutes an important tool, since the evaluation in a real environment of wireless
applications requires nonnegligible programming skills and time, besides imposing
limitations on the network size.8 Researchers generally use simulation to analyze sys-
tem performance (i.e., quantitative analysis) prior to physical design, or to compare
multiple alternatives over a wide range of conditions.

Simulation can be defined as “the representation of the behavior or characteristics of
one system through the use of another system, esp. a computer program designed for
the purpose” (according to dictionary.com Web site). For instance, computer programs
can simulate weather conditions, chemical and atomic reactions, etc. Theoretically
speaking, a computer simulation of a phenomenon becomes possible if mathematical
data and equations can be designed to represent it. Nevertheless, the fact that most
natural phenomena are subject to an almost infinite number of influences makes their
simulation an extremely difficult task in practice. Therefore, simulations are usually
performed by implementing only the most important factors of a phenomenon.

Simulations are also used to test new theories, and in the context of communication
and computer network research, new protocols. In the case of network protocols, after
creating a theory of causal relationships or a description of interactions between the
different network entities (hosts/routers, data links, packets, etc.), a network engineer
can codify these interactions in the form of a computer program. This program or sim-
ulator models the behavior of a network either by calculating the interactions between
the different network entities using purely mathematical models, or by capturing and
playing back observations from the behavior of these network entities. If the simulated
program behaves in the same way as the real case, there is a good chance that the
proposed relationships/descriptions of interactions are correct.

8Wireless scenarios may be particularly difficult or expensive to emulate using real hardware.
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Fig. 3. Workflow describing the steps related to a protocol design based on the simulation non-formal
approach.

A workflow describing the steps required in the protocol design process using the
simulation nonformal approach is shown in Figure 3. After the protocol description
(represented by idea in the workflow), the network scenario description must be pro-
vided. Considering the case of wireless network simulators, the “scenario description”
specifies the topology (number of nodes, node distribution, network area size), the con-
nectivity (the communication range, the neighborhood density), the network dynamic-
ity (static, nodes join/leave, link failures, mobility model—individual or group mobility),
and the traffic characteristics (messages types and format, traffic type, communication
model—broadcast, unicast, gossip, etc.). The “implementation” of the protocol speci-
fications is then followed by the experiment description. This latter step has as its
goal to describe the metrics (delay, delivery ratio, latency, etc.) to be evaluated and
consequently results in the implementation of statistic monitors. These monitors are
entities that check the performance metrics during the simulation execution and gen-
erate the trace files accordingly. Trace files are generated according to the designer’s
needs and register monitored statistics, which will be used for final protocol analysis.
Important examinations should be performed in order to guarantee the correct protocol
implementation and scenario specifications [Kurkowski et al. 2005].

Typical examples of currently used networking simulators are NS-2 (see footnote 2),
OPNET (see footnote 3), GloMoSim (see footnote 4), SimReal,9 SENSE,10 TOSSIM
(see footnote 5), WSNet,11 SensorSim,12 J-Sim,13 SENS,14 EmStar [Girod et al. 2004a,
2004b],15 and REAL [Keshav 1988]. These simulators target a higher range of protocols
and provide a simulation language with network protocol libraries. Instead, the “do-
it-yourself” class of simulators are much more focused implementations that usually
model only the details relevant to the developer.

Most network simulators (Network Simulator; OPNET simulator; GloMoSim; WS-
Net; TinyOS Simulator) use discrete event simulation, in which a list of pending
“events” is stored, and those events are processed in order, with some events trigger-
ing future events – such as the event of the depart of a packet at one node triggering
the event of the arrival of that packet at a downstream node. Some others are classi-
fied as application-oriented simulators (SENS; EmStar) and provide a framework for
developing applications on wireless sensor networks. Most systems have also an im-
proved programming environment with a graphical user interface (GUI), while some
network simulators require input scripts or scenario descriptions (network parameters:
node placement, connectivity, link failures, etc.). In particular, in the NS-2 simulator,

9SimReal Network Simulator. ns.l10.csie.nctu.edu.tw/.
10Sensor Network Simulator and Emulator. www.ita.cs.rpi.edu/sense/index.html.
11Wireless Sensor Network Simulator. worldsens.citi.insa-lyon.fr/joomla/index.php.
12A Simulation Framework for Sensor Networks. nesl.ee.ucla.edu/projects/sensorsim/.
13Java-Sim. www.j-sim.org/.
14A Sensor, Environment and Network Simulator, osl.cs.uiuc.edu/sens/.
15Software for Wireless Sensor Networks. cvs.cens.ucla.edu/emstar/.
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a split-level programming model is provided in which packet processing is done in the
C++ system language while the simulation setup is done in a scripting language (i.e.,
Tcl/Tk, oTcl). A common output of simulations is the trace files.

Simulators typically come with support for the most popular protocols in use today,
such as IPv4, IPv6, UDP, and TCP. Some of them, as in the cases of Networks Simulator,
OPNET simulator, GloMoSim, Java-Sim, and REAL, bring the support for simulating
different kind of WSONs (like wireless sensor networks, vehicular networks, MANET,
etc.). On the other hand simulators like SENS, EmStar, SENSE, SensorSim, WSNet,
and TinyOS Simulator were specifically designed for the wireless sensor networks’
simulation.

Some works in the literature contain interesting discussions about the limitations
and drawbacks of some simulators [Cavin et al. 2002; Kurkowski et al. 2005; Andel and
Yasinsac 2006; Kiess and Mauvea 2007]. A survey on simulators is also contained in
Curren [2005]. That survey presents characteristics of some main network simulators,
discusses their advantages and disadvantages, and presents their differences.

In spite of the drawbacks described in Section 6, simulation is still considered the
most widely used methodology for evaluating network protocols. This is mainly due
to its scalability and reproducibility characteristics, besides allowing protocol design-
ers to obtain some further observations that cannot be captured by analytical models.
Therefore, some works in the literature discuss the pitfalls to avoid when perform-
ing simulation-based studies [Kurkowski et al. 2005; Balci 1997; Bagrodia and Takai
1999]. Pitfall examples include starting implementation without previously validating
the model to be implemented; not correctly configuring all the variables of the simulator
and/or leaving key parameters undefined; not properly setting the seed of the pseudo-
random number generator, etc. Avoiding pitfalls can aid researchers in conducting and
reporting credible simulation results.

4.2. Emulation

An emulator is different from a simulator in the way it runs actual application code.
More specifically, it refers to the ability of a computer program or hardware environ-
ment to closely reproduce the features and behavior of real world devices. In this way,
emulation focuses on recreating the original device environment and can be time con-
suming and difficult, but valuable because of its ability to maintain a closer connection
to the authenticity of the real device.

In general, in the network research domain, emulators use a simulation program in
conjunction with an emulated hardware in order to observe end-to-end performance
of the emulated device. An emulator may thus trick a running software into believing
that an emulated device is really a real device. As an example, software programs
can emulate microprocessors and sensor devices. This focus on exact reproduction of
external behavior contrasts with simulators, which use an abstract model of the system.

A workflow describing the steps required in a protocol emulation process is similar
to the one shown in Figure 3 for simulation. The differences are basically at the level of
detail required at the implementation step and the kind of generated results. Simula-
tion tools, for example, result in statistically evaluated protocols and algorithms, while
emulation tools result in tested implementations.

Some examples of wireless sensor network emulators are TOSSIM, EmStar, and
WSim. Although being described as a discrete-event simulator for TinyOS applications
on MICA Motes, TOSSIM (see footnote 5) is more a TinyOS emulator than a general
WSON simulator. This is due to the fact that programs developed in TOSSIM can
be directly targeted to Motes without modification, facilitating then the source-level
application and OS debugging. EmStar (see footnote 15) is a Linux-based software
framework for developing and deploying wireless sensor networks, and can be used
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to develop software for Mica2 motes and iPAQ-based microservers. Like WSim and
TOSSIM, EmStar uses the half-simulation/half-emulation approach. WSim (see foot-
note 6) simulates the hardware based on the MSP430 microcontroller (MCU) series
from Texas Instruments. One of the main WSim feature is its interface with the WS-
Net simulator (see footnote 11) to perform the simulation of a complete sensor network.
More examples of emulators are the MNE [Macker et al. 2003], NetKit [Pizzonia and
Rimondini 2008],16 and NEMAN [Puzar and Plagemann 2005]. Other emulators are
listed in Rimondini [2007].

In spite of the drawbacks described in Section 6, the real advantage of emulation is
the fact it allows much higher flexibility in carrying out network tests. The software
piece of an emulator allows every aspect of the network be influenced and monitored
like it could be in a real network, which ensures very high accuracy.

A taxonomy of a number of emulators and a discussion about the differences of
each one is provided in Rimondini [2007]. Different approaches to model mobility in
emulation and real world testbeds, and an overview of different evaluation techniques
are provided in Kropff et al. [2006] and Kiess and Mauvea [2007].

4.3. Testbeds

In addition to theory, simulators, and emulators, there is a strong need for large-scale
testbeds where real-life experimental conditions hold.

In particular, the importance of testbed-based evaluation of network proto-
cols/applications is gaining wider recognition in the networking research community,
especially in the wireless and mobility areas. This is due to the fact that testbedding
real systems allows us to confront challenging issues that do not occur in simulations.
More specifically, building real systems forces you to handle cases where theoretical
models are incorrect, or do not capture the right details. Thus realistic evaluation of
technologies and their mutual interactions play a major role in identifying the key
performance bottlenecks.

On the other hand, real testbeds do not allow repeatability and tight control as well
as scalability, mainly caused by high costs for hardware, software, and manpower. To
overcome these drawbacks, some research-oriented real network testbeds that support
the development, debugging, and the evaluation of new network services were deployed:
Emulab,17 APE,18 ORBIT,19 RON,20 PlanetLab,21 PlanetLab Europe,22 OneLab,23 and
GENI.24

Emulab is an interesting example of a real network testbed with public facilities. It is
an experimental integrated platform that provides access to a wide range of real exper-
imental environments like live-Internet (interaction with RON and PlanetLab), mobile
wireless networks (six robots are equipped with sensor capabilities), sensor networks
(25 motes are available), 802.11 Wireless, etc. In addition to network testbeds, Emulab
also allows the execution of emulated experiments, as well as simulations. In particu-
lar, by using NS-2’s emulation facilities,25 Emulab allows the interaction of simulated

16Netkit Network Emulator. www.netkit.org/features.html/.
17Total network testbed. www.emulab.net/.
18Ad Hoc Protocol Evaluation testbed. apetestbed.sourceforge.net/.
19Radio grid testbed. www.orbit-lab.org/.
20Resilient Overlay Networks. nms.csail.mit.edu/ron/.
21PlanetLab platform. www.planet-lab.org/.
22PlanetLab Europe platform. www.planet-lab.eu/.
23OneLab European platform. www.one-lab.org/wiki/view/OneLab.
24Global Environment Network Innovations, www.geni.net/.
25NS-2 Emulation Extensions. http://ns-2.blogspot.com/2007/05/ns-2-emulation-extensions.html.
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networks with real networks. Thus Emulab unifies different environments under a
common user interface, integrating them into a common platform. NS-2’s emulation fa-
cilities include methods and extensions allowing the introducion of the NS-2 simulator
into a live network and simulating a desired network between real applications in real
time. In particular, special objects within the simulator are capable of introducing live
traffic into the simulator and injecting traffic from the simulator into the live network.

The original Emulab was primarily installed at the University of Utah, which is
also home to most Emulab software development. Emulab, however, is now present in
more than two dozen sites around the world.26 Some Emulab testbed are the Deterlab
(cyber-DEfense Technology Experimental Research laboratory) testbed at U.S.C. and
at U.C. Berkeley27; the TIDIA/Kyatera Emulab testbed in Brazil28; the TWISC (Taiwan
Information Security Center) emulation testbed29 in Taiwan, etc.

Started as a research project at Uppsala University and partly funded by Ericsson,
APE is the only existing testbed for large mobile ad hoc networks testbed (see footnote
18). APE contains an encapsulated execution environment or, more specifically, a small
Linux distribution and tools for post testrun data analysis. It aims at making the
process of performing complex real-world tests as easy as possible. It focuses on smooth
deployment, high ability of customization, and ability to easily run several routing
protocol implementations for comparisons.

ORBIT (see footnote 19) is a radio grid testbed for the evaluation of next-generation
wireless network protocols. ORBIT consists of a 400-node indoor radio layer emulator,
with 64 static nodes in a grid layout equipped with wireless network interfaces, and a
50-node outdoor, full-scale network. Funded by the the National Science Foundation,
ORBIT is a collaborative effort between several university research groups in the
New York and New Jersey region and industrial partners like Lucent Bell Labs, IBM
Research, and Thomson.

The MIT Resilient Overlay Network (RON) (see footnote 20) is a large platform
funded by DARPA. Consisting in an application-layer overlay on top of the existing
Internet routing substrate and having 17 sites located around the Internet, RON al-
lows research in Internet-based distributed systems (i.e., resilient routing, peer-to-peer
systems, distributed application development, etc.). Related testbeds are the X-Bone
project,30 which provides a toolkit for rapid deployment of overlay network for things
like IPv6; and the 6bone testbed,31 an IPv6 testbed to assist in the evolution and
deployment of the next-generation Internet network layer IP protocol.

The development of the PlanetLab platform (see footnote 21) had as a key motivation
to evolve an improved Internet architecture by implementing new protocols as an
Internet overlay. More specifically, PlanetLab is a network of computers located at sites
around the world, forming a testbed for creating and deploying planetary-scale services.
In this way, PlanetLab serves as a testbed for overlay networks and responds to the
interest of the research community in experimenting with large-scale applications. New
large-scale services can then be tested and validated in an environment that is intended
to replicate the environment of the Internet but does not disrupt the performance of
the Internet.

A PlanetLab independent slice and management authorities spanning Europe is
emerging: PlanetLab Europe (see footnote 22). Its control center is in Paris and it is also

26Other testbeds. www.emulab.net/docwrapper.php3?docname= otheremulabs.html.
27Network security testbed, www.deterlab.net/.
28www.emulab.lasc.usp.br/index.
29testbed.ncku.edu.tw/.
30www.isi.edu/x-bone/.
31go6.net/ipv6-6bone/.
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federated with the worldwide PlanetLab control center in Princeton. This guarantees
the access of the entire worldwild PlanetLab platform to joint members of PlanetLab
Europe.

PlanetLab Europe is in fact supported by the OneLab (see footnote 23) project,
financed by the European Commission. OneLab is an open networking laboratory that
has as its goal to extend the PlanetLab infrastructure by enabling the deployment
of PlanetLab nodes in new wireless environments. In addition, OneLab also aims at
the improvement of monitoring capabilities of PlanetLab, taking into account both
networking and system performance issues.

Finally, the Global Environment Network Innovations (GENI) project (see footnote
24) consists in having a bold new research platform, supported by the American Na-
tional Science Foundation (NSF). GENI aims to help the construction of a 21st century
Internet, a new Internet fundamentally better than the Internet of today. The goal
of GENI is to enhance experimental research in networking and distributed systems,
and to accelerate the transition of this research into products and services that will
improve economic competitiveness. The GENI platform will consist of a collection of
physical networking components, including a dynamic optical plane, forwarders, stor-
age, processor clusters, and wireless regions.

Emulab, APE, and ORBIT are some examples of testbeds allowing experiments
in WSONs, while RON, PlanetLab, PlanetLab Europe, OneLab, and GENI focus on
Internet-based experiments. In particular, Kropff et al. [2006] and Kiess and Mauvea
[2007] have provided interesting surveys on real-world experiments and testbeds of
ad hoc networks. These documents have reported on key attributes of some testbeds
and provided a testbed classification to aid researchers in selecting the appropriate
candidate tools for their experiments.

4.4. Prototyping

Prototyping is the process of building a model of a system. This model is then used to
test the designed aspects or to illustrate ideas of the system. In this way, a prototype
represents a useful way to refine designed ideas as a preparation for the final system
deployment.

Recently, the new concept of rapid prototyping has emerged as a powerful tool to
evaluate protocol performance. Abdesslem et al. [2007] introduced the Prawn (PRoto-
typing Architecture for Wireless Networks) software environment. Prawn allows rapid
prototyping and focuses on obtaining, with little effort, an instantiation of the system
that may not be optimized but is fully functional and complete. The goal is thus to make
prototyping become attractive for designers by making systems design and evaluation
as easy, quick, and effortless as possible. Notice that prototyping represents a different
but complementary process of protocol design compared with real testbeds.

Prawn provides a set of basic building blocks (like neighbor discovery, link quality as-
sessment, message transmission, etc.) that implement common functionalities required
by wireless protocols. By using a language-independent API, the designer can then use
the defined high-level primitives to send and receive data, and retrieve information
from the network, without caring about sockets, communication setup, addresses, etc.

Contrary to real testbeds, rapid prototyping addresses very early stages of the de-
sign process. It server as a complementary approach to simulation, emulation, or real
testbeds. In opposition to the previous nonformal approaches, the main goal of rapid
prototyping is to facilitate the protocol design process.

5. FORMAL APPROACHES

By surveying the literature, it appears that protocols most of the time are de-
signed using rather nonformal approaches. In the initial phase, nonformal approaches
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basically consist of a textual description of services and data structure provided by the
protocol. This design process is then iteratively carried on through incremental phases.
During these phases, the designers informally refine the protocol by appending details
and checking eventual errors. Finally, once the designers are satisfied by the service
requirements and convinced that the protocal is no longer errorprone, the design pro-
cess is terminated and the protocol is provided. Nevertheless, as this design process is
based on informal refinements, it is impossible to guarantee that all requirements are
globally respected. In this manner, and for many protocol standards (e.g., those of ITU,
IETF, etc.), these designed specifications contain ambiguities and omissions. Even if a
programmer implementing the service attempts to reasonably resolve the ambiguities,
it will in all likelihood lead to an incorrect and inconsistent implementation. That is
the reason why many efforts conducted by the formal description techniques (FDT)
community as well the mathematical analysts community are still devoted to formally
modeling and validating the protocols.

Due to the flexible nature of wireless services and the large size of their user
community, errors not detected through the incremental design process described
above, and this could have a great impact, especially if problems appear once the
systems are deployed. In addition, although analytical methods for modeling and
analyzing complex systems have been known since the 1960s [Petri 1962; Markov
1971] and though formal approaches have been used to validate wired systems for
many years now [Holzmann 1991], wireless self-organizing networks raise many novel
constraints that open new issues in the design, analysis, and formal validation of
their protocols (see Section 3). Nevertheless, some formal methods and tools may be
successfully adapted to be used in the wireless context. Contrary to nonformal ap-
proaches, the main objective of formal approaches is to provide a nonambiguous model
of the protocol from which quantitative or qualitative properties may be extracted and
studied.

Formal models can be defined using high-level formalisms (for example SDL,
PROMELA, stochastic Petri Nets, etc.) or more low-level formalisms that are often
the underlying semantic models of the high-level ones (for example, finite automata,
labeled transition systems, Markov chains, etc.). According to the type of properties
to be checked, the appropriate formalism and its associated underlying model have
to be properly chosen. Indeed, they share drawbacks that are stated in the Section 6.
While, some formalisms are more convenient to use in addressing the broadcasting
feature of WSON such as process algebra, others are more efficient in dealing with the
table-driven features such as SDL or PROMELA. We do not detail in this article the
languages that are more adapted to each feature; instead the major target here is to
discuss validation techniques relying on formal approaches.

The main goal is then (1) to evaluate the performance and the dependability of a
system (by the mathematical analysis community), (2) to match the formally specified
and extracted properties with the protocol requirements or directly with the imple-
mentation, by reasoning about the system using mathematical relations. First, the
mathematical analysis community provides diverse techniques to model complex sys-
tems applying mathematical aspects. The main goal here is to evaluate the performance
of a system. Second, two main technique sets define the formal validation approaches
that are commonly applied to network protocols: verification and testing. The goal of
formal verification is to improve reliability by arguing through mathematical logics
and thereby to check that formal system model fully complies with a given set of re-
quirements. Regarding formal testing, test sequences are generated from the correct
and verified models in order to be checked on real implementations. Formal approaches
are thus able to guarantee that a protocol is efficient and free of errors and that the
implementation satisfies the requirements.
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These formal communities provide nonambiguous and correct formal models as well
as implementations conforming to informal requirements. They cover the broad cycle
of protocol development and drastically enhance its reliability and efficiency. These
techniques are, however, quite distinct and hence constitute three different communi-
ties.

5.1. Formal Mathematical Analysis

Models are used to answer questions related to efficiency and trustworthiness, offering
a means to comprehend an otherwise incomprehensible problem. It helps to visualize
the problem, to break it down into discrete, manageable units. Although it is a simplified
abstract view of the studied complex system being studied, a model has the features
required to accurately capture the behavior of the system.

The performance of a system can be improved via modeling it using mathematical
methods and by reasoning about it. Mathematical models can be classified as: linear
versus nonlinear, deterministic versus probabilistic (stochastic), static versus dynamic,
or lumped versus distributed parameters.

Among the mathematical models, stochastic models have been found useful in the
design and analysis of advanced computer and communication systems. Stochastic is
synonymous with random, which means that, in a stochastic model, randomness is
present, and variable states are not described by unique values, but rather by prob-
ability distributions. A stochastic model can thus be used for estimating probability
distributions of potential outcomes by allowing for random variation32 in one or more
inputs over time. This means that, even if the initial inputs are known, there are many
possibilities the outcomes might go to, but some paths are more probable and others
less. Distributions of potential outcomes are derived from a large number of simulations
(stochastic projections) which reflect the random variation in the input(s). This large
number of simulations are usually gotten by stochastic techniques called Monte Carlo
methods [Doucet et al. 2001; Rubinstein and Kroese 2007; Kwon and Kim 2008; Wang
and Xiong 2005]. A Monte Carlo method is a technique for iteratively evaluating a
deterministic model using random numbers and probability to solve problems. It is
just one of many methods for analyzing uncertainty propagation, where the goal is to
determine how random variation, lack of knowledge, or error affects the sensitivity,
performance, or reliability of the system that is being modeled.

There exist several high-level stochastic models, for example, stochastic process al-
gebra, such as the Performance Evaluation Process Algebra (PEPA) of Jane Hillston,33

the Stochastic Automata Network (SAN) [Plateau and Atif 1991], stochastic Petri nets,
etc. The Petri nets, in particular, developed in the early 1960s by C. A. Petri in his
Ph.D. dissertation [Petri 1962], are useful for modeling concurrent, distributed, asyn-
chronous behavior in a system [Peterson 1977, 1981]. Also known as a place/transition
net or P/T net, a Petri net is a directed bipartite graph, in which the nodes represent
transitions (i.e., discrete events that may occur), places (i.e., conditions), and directed
arcs. Arcs run between places and transitions, never between places or between tran-
sitions. The places from which an arc runs to a transition are called the input places
of the transition; the places to which arcs run from a transition are called the output
places of the transition. For nonfunctional properties, timing concepts need to be added.
To achieve this, a firing delay is associated with each transition that represents the
time at which the transition has to be enabled. In the case of a delay associated with a
random distribution function, we call the resulting net class a stochastic Petri net.

32The random variation is usually based on fluctuations observed in historical data for a selected period
using standard time-series techniques.
33http://www.dcs.ed.ac.uk/pepa.
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The common underlying semantic model of such stochastic high-level models is the
Markov chain. Markov chain models are some of the most powerful tools available for
analyzing complex systems and are derived from the Markov property [Markov 1971].
This property states that “given the current state of the system, the future evolution of
the system is independent of its history.” In other words, a Markov chain is a sequence
of random variables x1, x2, x3, . . . with the Markov property, namely that, given the
present state, the future and past states are independent.

Markov chains are often described by a directed graph, where the edges are labeled
by the probabilities of going from one state of a system to the other states. In discrete-
time Markov chains, the changes of a state of a system are only performed in discrete
time. On the other hand, in continuous-time Markov chains, changes can happen in
any random exponential distributed time. A property allowing the description of a
continuous-time Markov process in an equivalent discrete version can be also found
in the literature, allowing the simple and efficient definition of interest measures
[de Souza e Silva and Gail 2000; Bolch et al. 2006].

In queueing theory, Markov chains are also used to model the system in each state
[Bolch et al. 2006; Kleinrock 1975]. Queueing models allow a number of useful steady-
state performance measures to be determined, such as the average number in the queue
or in the system, the statistical distribution of those numbers or times, the probability
the queue is full or empty, and the probability of finding the system in a particular state
[Leao et al. 2001; Elwalid and Mitra 1992]. Another high-level formalism, the stochastic
fluid model, has also been largely used in the literature for analyzing different computer
and communication systems [da Silva et al. 2004; Kleinrock 1975]. In particular, when
the events rate of a system vary by many orders of magnitude, the use of fluid models
can result in a considerable reduction of the computational cost when compared with
the models where all the events are explicitly represented.

The main problems in modeling networks are that models are usually too large to
be handled by a computer system, and, due to model complexity, model development
is very time consuming. As a solution, methods have been developed for complexity
reduction, thus considerably reducing the development time [da Silva 2006].

Regarding the domain of WSONs, some researchers have used analytical models
for modeling medium-access protocols in wireless networks. The models are thus used
to compute throughput of flows in arbitrary network topologies or specific topologies
[Bianchi 2000; Chaudet et al. 2004; Ray et al. 2005; Boorstyn et al. 1987; Garetto et al.
2006, 2008b], to analyze delay in single-hop 802.11 networks [Tickoo and Sikdar 2004]
and to study the capacity in mobile ad hoc networks and DTNs [Garetto et al. 2007,
2008a, 2008b].

Finally, all the works discussed in this section dealt with quantitative properties in
a formal manner in order to evaluate performances. Once the formal model and formal
reasoning are performed, the simulation techniques presented in Section 4 may be
used as a complement to analyze the quantitative properties.

5.2. Verification Techniques

There exists very little research on the validation of wireless systems and more specifi-
cally on WSONs. The reason is twofold. First, many researches believe that the inherent
constraints of such systems make the verification process very time consuming and that
an important threshold has to be crossed before doing so becomes proficient. Second, it
was shown that there are inherent limitations on the methods for such wireless proto-
cols [Wibling 2005]. Nevertheless, we cite some of the studies providing techniques to
formally verify protocols in wireless self-organizing networks.

ACM Computing Surveys, Vol. 43, No. 2, Article 7, Publication date: January 2011.



7:18 A. Carneiro Viana et al.

In order to formally validate a protocol, the protocol has to be initially specified in
an unambiguous and structured manner. Two main approaches are advocated for the
verification.

—The first, called code verification, or static analysis, means that the protocol is imple-
mented with a regular programming language such as Java and the code is verified
afterwards. It becomes common that model checkers work directly on the source
code of software implementations rather than on a model provided by a user or a
standard. We can the model checkers BLAST and SLAM [Eisner 2005; Gunter and
Peled 2005], which work on C source code. For Java programs, we mention Bandera
[Corbett et al. 2000] and Java PathFinder [Havelund and Pressburger 2000], and
for C++ programs Verisoft [Godefroid 1997]. In such techniques which consist in
constructing a model from the source code, the abstracted model could lose some
information and the code still contain ambiguities, and flaw. As far as we know, even
if static analysis is widely used in other areas, it has been used only once in regard
to WSON protocols [Engler and Musuvathi 2004]. The authors directly analyzed the
code for finding errors in different AODV implementations [Perkins et al. 2003]. This
method has been utilized especially for bug assessment though it allows identifying
a loop error in some of the implementations.

—The second approach consists of describing the protocol using formal description
languages. These may be subsets of logics (first order predicate logic, for instance) or
subsets of automata (or transition systems) representations.

Commonly, the requirements of the system that have to be verified are expressed
using temporal logics. Qualitative properties may be designed by CTL [computation
tree logic; Clarke and Emerson 1981], LTL [linear temporal logic; Pnueli 1981] or
TCTL [timed computation tree logic; Alur and Dill 1990]. These properties may be
categorized as either liveness or safety [Kindler 1994]. A liveness property means a
true property that will eventually happen in the future, and a safety property speci-
fies a “bad” property that never happens. Although safety properties can be noticeable
in a finite running time of the system, liveness properties require sometimes infinite
system runs. In the same way, quantitative properties are often specified using spe-
cific quantitative models such as PCTL [probabilistic computation tree logic; Emerson
1990; Hansson and Jonsson 1994]. But we may also cite probabilistic timed automata
[PTA; Kwiatkowska et al. 2002a] (based on Markov chains or processes), quantita-
tive transition systems [QTS; de Alfaro et al. 2004], quantitative bound μ-calculus or
quantitative-bound automata (a combination of a quantitative automaton and bound
functions) [Chakrabarti et al. 2005].

From those formal models and the expressed properties of the requirements, two
main approaches are applied. The first is an algorithmic verification method commonly
called model checking [Clarke et al. 1999], which has had a broad success in the in-
dustry, especially due its interesting results (the possibility off easily finding flaws and
helping correct them) as well its wide toolset. The second method, called deductive veri-
fication [Manna et al. 1999], consists of formally proving that a property may be drawn
from a given set of premises. While the main advantage of this latter approach is to
prove properties of infinite state systems for which theorem provers are processed, the
advantages of model checking are to obtain a verdict in an automatic way and quickly
locate the flaws.

Figure 4 shows a summary of the verification techniques and their order of use.

5.2.1. Model Checking Approaches. Model checking approaches have been more com-
monly used in wireless areas than deductive verification approaches. Besides, both
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Fig. 4. Verification techniques.

qualitative and quantitative properties have been studied through diverse model check-
ing approaches. We depict in the following some interesting applications to WSON
protocols concerning first qualitative aspects and then quantitative ones.

de Renesse and Aghvami [2004] have utilized the model checker SPIN [Holzmann
2003] in regard to the MANET routing protocol WARP. By specifying their protocol us-
ing the high level-language PROMELA (PROcess MEta LAnguage) and their properties
in LTL, the authors have covered 98% of the state space. However, the experiments
were performed for a rather small network containing only five nodes.

A Bluetooth location system was also verified using SPIN and PROMELA in which
the network topology consisted of 18 wireless nodes with various scatternet layouts
and properties considering four basic properties [Fernández-Iglesias et al. 2005]. The
authors illustrated an ill-defined protocol as well as incompatible properties on some
of the configurations. By that way, even if very few properties were studied, it points
to the possibility that topologies, mobility, interference, etc., could be real issues when
defining such properties in WSON.

A formal approach to verify a model health service platform has also been performed
by Jones et al. [2004]. The main contribution of this research was to integrate the
OMG MDA (model-driven architecture) concepts into the validation process. Although
the results were few and the study had a limited testing coverage, it raised challenges
in verification when using models processing by means of MDA.

The model checker UPPAAL [Larsen et al. 1997] was applied by Chiyangwa and
Kwiatkowska [2005] in order to study the timing properties expressed in LTL of the
MANET routing protocol AODV. Interesting results and possible enhancements of the
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protocol were provided. However, the experimented topology was linear and a restricted
number of nodes were chosen.

The UPPAAL tool plus TCTL expressions were applied to verify the quality of service
on a MAC protocol for wireless sensor networks [Watteyne et al. 2005]. The monitored
topology considered these was linear and the main properties verified on the protocol
were real-time constraints especially for automotive domains. Despite some impor-
tant given assumptions (particularly on the topology), an exhaustive exploration of
all paths of the system execution graph was conducted in which interesting scenarios
were executed. The results especially on the timing constraints verification in such
networks were very promising even if issues still remain. Complementary results for
their verification process were obtained by Godary et al. [2004], where UPPAAL was
evaluated.

Regarding quantitative verification or (bound) model checking in WSON, little work
has been performed up to now. Mainly, the quantitative properties that are verified by
model checking have been the system power requirements, system lifetime, response
time, peak running total, flooding, dynamic power management, dynamic voltage scal-
ing, and real-time delays. We cite the following studies.

In Kwiatkowska et al. [2002b], model-checking was used for the verification of the
802.11 standard. The authors focused on assessing the performance of the basic access
(a distributed coordination function) and two-way handshake achieved through the ver-
ification of properties expressed in PCTL temporal logic. For that purpose, the authors
constructed a probabilistic model (a Markov decision process) referring to a specific
and fixed topology consisting of two source and two destination nodes. Nevertheless,
due to the complexity of the study and the size of the probabilistic timed automata, the
scalability is uncertain.

Ballarini and Miller [2006] described the use of probabilistic model checking for the
comparative analysis of an IEEE 802.11 set of protocols for MANETs with S-MAC, a
protocol designed to reduce energy consumption suitable for wireless sensor networks
on a 3-hops topology. The formal specification is a Markovian model which is analyzed
using a probabilistic model checker like PRISM [Rutten et al. 2004]. The model verifi-
cation was achieved through a combination of specific probabilistic reachability PCTL
properties and rewards properties. However, the main drawback (common to much
other research) is still the scalability, the topology applied in that article being indeed
relatively limited (four nodes, one source, one sink).

Fehnker and Gao [2006] presented a performance analysis of flooding protocols in
wireless sensor networks applying probabilistic verification. The authors used both the
PRISM model checker with Markov chain processes and the Monte-Carlo simulation.
The checker allowed them to analyze performances of the protocols even applied on
nondeterministic models.

Finally, in Kwiatkowska et al. [2005], the PRISM model checker was also used, but
applied to dynamic power management properties. Probabilistic labeled transitions and
PCTL are designed to study the performance of dynamic power management policies
and dynamic voltage scaling schedulers.

5.2.2. Deductive Verification Approaches. Deductive verification techniques are less fre-
quently applied. We have found very little analysis regarding qualitative properties
and, to the best of our knowledge, there exists no related work on quantitative proper-
ties in WSON. The main reason for this may be that the theorem prover tools are not
self-sufficient and, because of the complexity of the constructs or functions designed,
most of the time experts are required to manipulate such tools. Nevertheless, we cite a
few studies regarding WSON in this area.
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Bhargavan et al. [2002b] applied the HOL [HOL 2005] theorem prover in their
deduction of route validity and freedom from routing loops in AODV. They utilized
three conditions on next-node pointers, hop counters, and sequence numbers to form
a path (namely, the invariant in deductive verification) on pairs of nodes (on the path
from source to destination). Three properties were verified using SPIN, after which
HOL allowed than to prove that the three properties led to the path-invariant theorem.
But an important contribution was to illustrate that it’s quite difficult to specify WSON
protocols. Indeed, despite the interesting results provided by the authors, they noticed
themselves that they failed to prove properties for AODV (while they did prove them
for RIP).

Another work in regard to the MANETs proved the absence of routing loops in a
simplified version of AODV [Das and Dill 2002]. The strategy is quite similar to the
previous one, but more automated. They used predicate abstraction and could raise
most of the quantified predicates automatically by analyzing spurious counterexample
traces. The method successfully discovered all required predicates for the version of
AODV considered but in a rather limited network that had with three nodes and was
without any mobility.

Following the previous example, a tool called UCLID PA [Lahiri and Bryant 2005]
was used to prove the freedom of loops in AODV once again [Lahiri 2004; Lahiri
and Bryant 2007]. While the previous verification process was done using quantified
predicates, the these authors used indexed predicate abstraction, therefore providing
an enhanced axiomatic system but applied on the same very small and limited network.

Borujerdi and Mirzababaei [2004] verified properties extracted from the MobiCast
protocol [Tan and Pink 2000] integrated into a mobile network with microcells. The
protocol has been formally specified in Prolog language [Sterling and Shapiro 1994]
and the expressed properties proved by applying an SLD resolution [Spivey and Spivey
1996]. Several inconsistencies were detected in the first version of the protocol and
resolved with minor variations. And despite the fact that no real mobility was applied
to their experiments, the authors demonstrated that formal approaches are required
all along the development phase of a protocol.

5.2.3. Hybrid Approaches. Although model checking and deductive methods are com-
monly employed separately, an attempt to merging both techniques in wireless network
domain has been studied. McIver and Fehnker [2006] defined a stepwise specification
and refinement of WSON protocol characteristics using a combination of proof-based
methods and model checking. Energy-efficient protocols in wireless networks have
been considered especially by analyzing delays and collisions criteria in such systems.
From an exhaustive search with model checking, the authors illustrated weaknesses
in the systems and thus provided lower and upper bounds on quantitative aspects of
the protocol. Formal proofs also enabled them to investigate optimal protocol behavior
especially in terms of trading off energy requirements and performance. Nevertheless,
both methods being quite different, problems regarding the obtaining of realistic formal
models and performance criteria for such WSONs were raised.

5.3. Formal Testing Techniques

Formal techniques for protocol testing have been performed for a long time now
[Holzmann 1991]. Two main mechanisms may be utilized for this purpose: passive
and active testing.

Active testing is based on the execution of specific test sequences in regard to the
implementation under test. These test sequences are obtained from the formal model
according to coverage criteria. These criteria can then be applied on the specification,
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for example, coverage of all logical conditions, coverage of all paths. This allows setting
if the specification as well as the code was covered during the testing phase.

The tests may be generated automatically or semiautomatically from test criteria,
hypothesis, and test goals. The format of these sequences commonly used by the testing
community is TTCN3 [ETSI 2007], from which their executions are performed through
points of control (execution interfaces). These points of control are installed in the
context of a testing architecture, which means the way to put the testers (e.g., upper
and lower testers to test a specific stack layer, the different interfaces, and the oracle
in order to provide a verdict on the executed tests to the tested implementation). We
can mention two families of testing: the static and dynamic for active testing. The first
is based on static analysis of the source code, that is, the implementation. The code is
inspected regarding the checklist elaborated or by analyzing the control and data flow
graph. Using this kind of test, we do not have to exercise the system under test with real
data. On contrary, dynamic testing implies that the system under test is executed under
different configurations, that is, with different input data tests. The test sequences to
be exercised on the implementation are derived from the model described by an FDT.
Afterwards, the inputs of the test sequence are given to the implementation and the
output results are compared to those expected by the specification.

Passive testing consists in observing the input and output events of an implemen-
tation under test in runtime. The term passive means that the tests do not disturb
the natural runtime of a protocol or service. This concept is sometimes also refereed to
as monitoring in the literature. The record of the event observation is called an event
trace. This event trace will be compared to the formal specification as a test sequence.
The passive testing techniques are applied especially because the active ones require
important testing architectures, which the testers need to control the system at some
specific points. This is sometimes not feasible or even undesirable. Nevertheless, while
test sequences in active testing may give concrete verdicts (except for “inconclusive”
ones), an event trace that satisfies the model does not mean that the whole imple-
mentation satisfies the specification. On the other hand, if a trace does not satisfy the
specification, then neither does the implementation.

Passive and active testing have their own advantages and drawbacks, especially
when used on wireless self-organizing network protocols. Nevertheless, the results
obtained depend on the system under test and essentially on the testing goal, the
testing type. The testing type considers the whole testing process of the protocol, which
consists of different steps: unit, conformance, interoperability, integration testing, and
so on. Most of these testing types are normalized. For instance, conformance testing
has been standardized by the ITU-T in Technical Report 9646 [ISO 1994], in which
common testing architectures, interfaces, or points of control and observation are
mentioned and specified. Nevertheless, these standards are mainly designed for wired
systems and most of the time (if not always) the new inherent constraints of WSONs
(such as the lack of infrastructure or noncentralized systems) are omitted from these
documents. Although the tasks for testing in such an environment seem tough, studies
on formal techniques for testing protocols in such wireless contexts are presented in
the following paragraphs.

Figure 5 shows a summary of the formal testing techniques.
Lin et al. [2003] proposed a formal methodology to specify and analyze a MANET

routing protocol. It was based on the relay node set (RNS) concept. An RNS is a set of
nodes allowing all nodes in the network to be reached. According to the protocol, the
set is built differently: the reactive protocols build the set in a regular manner, when
it is required, while the proactive ones build the set during the route discovery per-
formed at the beginning of the network lifetime, being maintained during the network
lifetime. Passive testing techniques for conformance testing are applied in that article.
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Fig. 5. Formal testing techniques.

The framework illustrated in it has as its main goal to analyze the implementation
under test by metrics through nonfunctional aspects which are usually applied for a
performance analysis.

Glässer and Gu [2005] developed a formal model, namely, Distributed Abstract State
Machines (DASM), to allow the specification of ad hoc network routing protocols. Their
motivation was also to raise the main issues when designing such protocols. Neverthe-
less, only conformance testing by an active mechanism has been processed. While the
model allows verifying the behavior of a node in a functional way, it is nonexecutable
and does not allow observing of the interoperability of nodes.

Zakkuidin et al. [2005] provided another approach to formalizing testing of a MANET
routing protocol by applying game theory concepts. Game theory is based on the “in-
come” calculus. Income means, for instance, the convergence when the topology is
modified or the induced overhead. A strong hypothesis commonly applied in game
theories consists of the complete knowledge by the “players” of the “game.” It means
that each node is supposed to have a complete knowledge of the network topology
as well as of the nodes or link states. Furthermore, complete knowledge forbids the
nondeterminism. Therefore, some mobility models based especially on nondetermin-
istic behaviors and commonly used in WSON analysis can not be modeled. In many
wireless self-organizing networks and because of their characteristics, the complete
knowledge assumption may not hold, which invalidates the test sequence execution.

Maag et al. [2008] presented a new methodology for the conformance testing of a
MANET routing protocol, namely, Dynamic Source Routing (DSR). Active mechanisms
were applied combined with a nodes self-similarity approach allowing avoiding the
so-called “state space explosion” issue and reducing the needed formal model to a
dynamic topology. The approach was applied to the DSR-UU implementation by
E. Nordström at Uppsala University.34 Interesting ideas for interoperability testing
contexts were discussed.

Merouane et al. [2007] proposed an interoperability testing approach based on an
EFSM- (extended finite-state machine) based language. A testing architecture was
provided and test sequences automatically generated from an SDL specification in
order to test an implementation of DSR-UU. This work reveals the real complexity of
studying the interoperability aspects of WSONs. Some of the systems were so dynamic
that the observation or control of some real links (through the interfaces of nodes)
became a hazardous task. The authors therefore employed an emulation mechanism

34DSR-UU v0.1. http://core.it.uu.se/core/index.php/DSR-UU.
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coupling an NS-2 simulator and the implementation under test integrated into two
real nodes.

5.4. Hybrid Techniques

Although these verification and testing techniques are quite different regarding their
approaches and their own objectives, they are also complementary. That is the reason
why interesting studies have appeared that present the advantages of mixing verifi-
cation and testing approaches. Therefore, Maag and Zaidi [2007] defined a stepwise
approach that uses two languages to specify the OLSR protocol [Clausen and Jacquet
2003]. They applied Promela associated with the powerful tool SPIN to perform veri-
fication and SDL associated with the ObjectGeode tool [Verilog 1997] to generate test
sequences. Since both languages are different, the design approaches have not been the
same and a compromise has also been required in regard to the specification choices. Fi-
nally, the work illustrates essential issues while covering the protocol lifecycle. Indeed,
the authors revealed that the languages do not have the same power of expressiveness
and that some aspects which can be shown in one form with one language could be
impossible with the other. This is therefore why these validation activities are most of
the time completely distinct.

6. OBJECTIVES, LIMITATIONS, AND DRAWBACKS

In the previous sections, we have presented nonformal and formal approaches com-
monly used by the network and the performance analysis communities to address non-
functional properties. In the section devoted to formal approaches, some relevant work
coming from the verification and formal methods communities were presented, which
have been carried on to formally verify functional properties regarding the behaviors
of protocols.

This section recalls the main objectives of the techniques used in formal and nonfor-
mal approaches. The limitations and drawbacks of such approaches are then enumer-
ated and discussed with regard to the WSON domain.

6.1. Nonformal Approaches

6.1.1. Main Objectives and Techniques. Simulation, as explained previously, is a tech-
nique widely used to evaluate protocol performance and seems to give good results for
a large number of protocols [Kiess and Mauvea 2007]. It models influencing factors and
algorithms and investigates these aspects in an artificial software environment with
a high degree of abstraction. This technique appears at the same level as the formal
verification technique of the protocol development cycle. Simulation is also widely used
because the manipulated concepts are easier to use to model a system than analytic
analysis, which are based on mathematical equations. The main advantages of this
technique are that it permits one to observe and analyze protocol performance and to
verify expected properties (e.g., network lifetime extension, data delivery). Moreover,
it is much cheaper than other techniques as it allows reproducibility and repeatability
with a low effort just by changing some model parameters.

Emulation provides the best compromise between cost and precision. Emulation is
a mix of software and hardware combined to reflect the behavior of a network. Some
of the components are real and others are simulated. The main objective is thus to
test protocols in a more realistic environment, as a way to better forecast and analyze
protocol behavior, for later real-world implementation. This technique inherits the
drawbacks of simulation that will be detailed below.

Real-world testing consists of performing tests in a real testbed, which is an im-
plementation of the system very similar to the final one. The dimensioning and the
configuration of real testbed experiments are, in general, hard and costly processes.
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Since potential problems are only detected at the end of the lifecycle of the system, if
a built system is not the expected one, the implementation phase should be restarted
again from the beginning.

To summarize the techniques coming from the network research and performance
engineering area, we can clearly establish that the common objective is to evaluate
or to verify properties that are commonly named as nonfunctional properties, such as
servers loads, response times, rates of loss, data delivery reliability, etc.

6.1.2. Limitations and Drawbacks

(1) Simulation techniques
—The main drawback that can be formulated against simulation techniques [Kiess

and Mauvea 2007] is based on the assumptions that are made regarding the
underlying protocol layers implemented in the simulators. More specifically, they
represent potential errorprone points. In fact, models used by simulators have
usually not been previously validated, which may add errors to the simulated
environment. Hence this can impact the protocol performance evaluation and,
finally, result in a false analysis.

—We can also mention that simulation, as explained in Wei et al. [2003], does
not capture the internal behavior of a system. Indeed, some aspects of the sys-
tem that are relevant to performance evaluation may not be directly observable,
constituting then “black boxes.” Hence performance evaluation related to unit
measurement can be strangled by the “black box” effect of the system. To over-
come the lack of observation, the designers can use a lower level of abstraction
to model a system. But by reducing the level of abstraction, they can be too close
to the real implementation.

—The main concern with simulations is, however, the level of confidence we can
have in them. Some works in the literature show that divergences in obtained
results exist between different simulators [Cavin et al. 2002] and that common
existing it falls can impact the reliability of a simulation-based study [Kurkowski
et al. 2005]. The main conclusions are as follows: “omitting detail or oversimplify-
ing the simulation model can lead to ambiguous or erroneous outcomes” ([Andel
and Yasinsac 2006], page 3; “simulation assumptions always affect research out-
comes” ([Andel and Yasinsac 2006], page 5; and, finally, “insufficient statistical
analysis of independent simulation runs and improper data collection techniques
can produce ambiguous or inaccurate conclusions” ([Andel and Yasinsac 2006],
page 5.

—Although nonformal approaches are highly suitable for achieving performance
measures in large-scale networks, they cannot easily prevent protocol design
errors. Indeed, there are properties of protocols that do not relate to performance.

—Packet loss is commonly observable and controllable by using simulation tools
[Lundgren et al. 2002]. Nevertheless, the implementation of IEEE 802.11 in NS-2
is rather unrealistic because several properties (e.g., fluctuating links or different
transmission rates) cannot be represented as they depend on the implementation
of radio propagation.

—From the physical layer viewpoint, the reality (i.e., mobility and environment
models) is really tough to describe. Furthermore, wireless propagation models
in simulators are often too simple and general, being dependent on the details
or granularity required and integrated into the simulators [Cavin et al. 2002].
Therefore, qualitative and quantitative divergences between the results obtained
from different simulators might be observed even by applying the same scenarios
and parameters.
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(2) Emulation techniques
—The main concern with emulations is, however, complexity. Emulators are com-

plex pieces of software, but valuable because of their ability to maintain a closer
connection to the authenticity of the hardware device. Writing an emulator is
also a difficult process which requires obtaining appropriate system informa-
tion and then figuring out how to emulate the system hardware with software
code. In addition, the computational resources needed to run an emulated device
are typically higher than those available in the device itself. Consequently, the
performance of an emulated device is, in general, lower than that of the real
device. This may pose limits to the scalability of the size of the emulated network
[Rimondini 2007].

—Emulators have to face timing constraints [Kiess and Mauvea 2007] that need
to be thoroughly stated. Thus, due to these real-time constraints, the simulation
parts can be rapidly overstepped, which can lead to scalability problems.

(3) Real-world testing techniques
—While real testing experiments are ideal to tackle errors invisible in simulation,

experiments become rather limited as the number of nodes increases [Kiess and
Mauvea 2007]. Furthermore, these experiments have to be carefully executed
and orchestrated.

6.2. Formal Approaches

6.2.1. Main Objectives and Techniques. As previously described, there exist various tech-
niques to design a protocol by means of formal methods. This section rapidly sketches
the different techniques that are available and emphasizes their limitations, and how
they step to in the development lifecycle.

In the area of formal methods, verification and testing techniques have been widely
used for wired protocols, and are also used in WSONs. Section 5 identified several
studies on these two main domains that tried to transpose well-known techniques to
WSON protocols. Nevertheless, this is not a straight rearrangement due to the new
challenges introduced by WSONs (see Section 3), which underline new limitations or
exacerbate existing ones.

Verification consists first in providing a model of the system. At this stage, the model
will be used to automatically verify some properties of the protocol on the model and
not its performance. By this technique, we can verify the correctness of the protocol
regarding the requirements of the desirable behaviors of the protocol. The model issued
from this step can be used to generate the tests. The active testing generation phase
has to deal with a model that has been first checked, that is, that has been determined
to be conforming to its requirements. Furthermore, the model to generate the tests can
be constructed only for testing purposes and cannot come from the verification phase.
The languages used for test generation and for verification goals are often not the
same. Nevertheless, the model from which the tests will be generated requires verifi-
cation regarding it adequacy to meet requirements and also regarding some inherent
properties in the protocol, such as being loop free, or deadlock free.

In comparison to verification by model checking, deductive verification can handle
infinite-state systems with very rich data structures. The main drawback of this ap-
proach, which can explain that its use is not widespread, relies on the design by the
user of constructs, such as invariants and ranking functions. In other words, it requires
very accurate user skills to guide the theorem prover tool as the process is not fully
automatic.

The techniques, which operate to generate test cases and to verify some proper-
ties expressed by logical formulas, are based on exploration of the state space of
the model. Both techniques often have to face the well-known problem of state space
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explosion. Test generation methods produce test cases that are called abstract tests. To
be executed on a real implementation, these tests have to be expressed in a concrete
way, notably in the programming language used by the implementation, in order to
be able to interact with it. During the execution step, the concrete tests are executed
by feeding the implementation with the input of the test case and the answer of the
implementation is compared to the expected answer. This way to communicate with
the system is not always feasible and, to overcome this drawback, we mention passive
testing techniques. Indeed, passive testing needs only to retrieve traces of the real
implementation by means of sniffers and seeks on these traces the expected behaviors
of the implementation.

While nonformal approaches are essentially dedicated to nonfunctional properties,
the traditional concerns of formal techniques are to establish the correctness a system
regarding its expected behavior. We identify these properties as functional, which,
in regard to communicating systems, are related to the system behavior in terms of
interactions.

6.2.2. Limitations and Drawbacks

—Modeling is a time-consuming activity that requires a tremendous effort, but that
cannot be avoided at the model checking and model-based testing phase. Although
constituting an essential phase to establish the correctness of the protocol, mod-
eling is a very complex activity, especially regarding the level of abstraction to be
considered.

—In order to address the new challenges raised by WSON, formal methods have to
face the well-known problem of state space explosion. The explosion can occur when
the state space storage grows exponentially with the size of the model. To over-
come this problem, many techniques have been proposed such as symbolic represen-
tation, partial order reduction, compositional reasoning, abstraction, or symmetry
[Holzmann 2003]. Nevertheless, we are still faced with this problem. This explosion
is also responsible for the nonexhaustivity of the tests.

—Existing modeling languages have to deal with new features of WSONs. Whatever
the techniques used, the language needs to be expressive enough to capture all the
WSON features. Moreover, a tool is needed in order to automate verification and test
generation of the model. It also has to be able to handle the logic used to express
properties to be checked and also to cope with the language used to express test
objectives. This aspect is very important in particular for active testing techniques.

—Languages used by verification techniques are not able to handle the broadcasting
mode of wireless communication. Many languages used by verification do not allow
performing such a type of communication. The way to perform such broadcasting
could be to specify it by a unicast link with a matrix that contains the identifier of
all the nodes around the network. This is still an open issue [Wibling 2005].

—Many models consider fading links with distance between receiving or sending nodes.
Nevertheless, message losses due to collisions in a communication between in-range
nodes are most of the time obscured by the model. In addition, the collision model
is commonly required to challenge particular fault-tolerance mechanisms [Watteyne
et al. 2005].

—While models for formal verification may easily describe timing aspects designed for
WSON protocols, languages dedicated to testing approaches are not always (or even
most of the time) adapted. Constraints such as the execution on a real system might
suppose that the nodes are synchronized, which is a WSON challenge [Lundgren
et al. 2002].
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—The mobility of nodes in WSONs generates topology changes. For modeling and
verification, we have to consider such changes of connectivity. This features related
to the kinetics of nodes can increase the state space explosion and there is no straight
way to address it. Nevertheless, Maag and Zaidi [2006] explained a way to cope with
this drawback.

—Concerning the passive testing approach, we have to face a lot of inconclusive verdicts
when the collected traces are too short. In this case, the reasoning about correct
or faulty implementations is not possible. Moreover, the way to characterize the
properties that are found on the traces are known as functional patterns. They
characterize the expected behavior of the system. They have to be expressed in
an efficient manner, that is, in a nonambiguous way. This activity relies on a strong
expertise in regard to the system to be tested. Nevertheless, to overcome this difficulty
some studies have tried to assist this step by providing automatic mechanisms to
verify the soundness of the patterns on a formal model [Bayse et al. 2005]. Another
drawback of such techniques relies on the difficulty of merging the offline traces of a
multihop wireless network. A recent study [Zaı̈di et al. 2009] has been done on the
correlation of traces between two distant entities. For the WSONs, so far as we know,
there is no research that shows how to correlate traces coming from different nodes
in order to verify global properties.

7. DOMAINS CONVERGENCE

In practice, little cross-fertilization exists between the formal and nonformal domains,
which often work separately. Nevertheless, several attempts in the research area of
wired protocols have been made to converge these two domains, usually accomplished
by researchers coming from the formal area [Bütow et al. 1996]. This article thus
emphasizes the research conducted to make them converge. This section reports on this
research and discusses the common required effort to achieve that cross-fertilization
for the validation of WSON protocols.

The observations that have led to such research have been based on practical ex-
periences. Indeed, design experts communicate rarely with performance experts. The
obstacle can be explained not only by the difference in the concepts that they ma-
nipulate. Formal design methods and performance design do not address the same
objectives. The first is devoted to establishing the correctness of problems by revealing
errors. Otherwise, performance evaluation allows first avoiding system malfunctions
due to overcongestion of resources [Cavalli et al. 2004].

Performance evaluation for software systems allows efficiently characterizing the
right configuration of a system to respect a well-defined quality of service. Moreover,
we can identify congestion or faulty management resources. As mentioned in Wei et al.
[2003], designers have often neglected performance engineering. Discovering a perfor-
mance problem very late in the development lifecycle of a protocol can be costly. Cavalli
et al. [2004] stated that 80% of client/server systems have to be rebuilt because the low
performance obtained does not meet requirements. In this way, software performance
models of at an early stage can decrease performance failures. Indeed, the performance
of a system can be strongly related to the architecture of the system. Ideally, the per-
formance should be considered at a early stage of the design of the system.

After these statements, in the following sections, we address the attempts of conver-
gence in several manners and at different levels. We first report on the works performed
at the modeling step, that is, on the description of what the system is expected to do.
In the formal area, the model is called a formal specification. The way to take into
account performance requirements at the specification level consists of annotating the
model with performances requirements. Afterwards, we report on testing experiences.
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We explain how, for correctness purposes, some connections between both communities
have come about.

7.1. Convergence at the Modeling Step

We note that the link existing between formal techniques and simulation lies in the
use of a model. This link is a good starting point to make them converge, even if their
objectives are not the same. More specifically, the idea is to try to benefit from the
formal performed work to establish the correctness regarding functional properties,
and then to use this correct model to evaluate performance-related issues. Otherwise,
another idea is to take advantage of the work performed at the performance level, by
completing the existing and preliminary formal model with the performance model.

Some research to bridge both communities has already been carried out on the in-
tegration of nonformal and formal approaches in the case of validation of wired-based
protocols. By surveying the literature, a lot of studies dealing with the transformation
of functional models into a performance-oriented model can be found [Bütow et al.
1996; Heck 1996; Petriu and Woodside 2002; Mitschele-Thiel and Müller-Clostermann
1999; Steppler and Lott 1997], especially on the integration consisting of adding to the
formal model nonfunctional properties. With such an approach, the work performed at
a modeling step for validation purposes is reused for the performance evaluation. We
do not need to perform the modeling work twice. As the purposes are not the same, the
modeling step needs some adjustments to deal with performance constraints. It also
needs to have an analysis method to solve the resultant model. Typically, the perfor-
mance evaluation is performed after the functional design, when all the architectural
decisions have been made.

The convergence of network research and protocol engineering research is becoming
more and more necessary, especially with the new challenges that WSONs raise. The
techniques are faced to their limits. In this way, we argue the importance of taking
advantage of the differences between the techniques. This is also the observation made
by Samper et al. [2006]. This article is, indeed, to our knowledge, the only one that ap-
plies formal models to present the different stack layers of a WSON node (in this case
for the sensor networks) and their environment as well. The authors advocated using
FDTs for all their advantages such as reliability, reusability, etc. (see Section 2). The
basic formalism is the communicating parallel interpreted automata written in Reac-
tiveML [Mandel and Pouzet 2005] and the hardware functionalities may be designed
in VHDL (Very High-Speed Integrated Circuits Hardware Description Language). An
interesting aspect is to formalize the environment, which may also be the cause of the
different results obtained in simulation and real case studies. For that, the Lucky tool
[Javier and Raymond 2005] was proposed. Finally, and like it is introduced in Samper
et al. [2006], the convergence needs to occur not only at the modeling phase but also
has to be considered for validation purposes.

7.2. Convergence at Validation Level

Although formal and nonformal approaches have their own main testing targets as well
as their own characteristics and limitations, some attempts at convergence been carried
out. The main goal is to get the advantage of their differences for covering as much as
possible the phases of the protocol validation in its development lifecycle. But merging
or blending both methods is not effortless. First, three entities are involved in this
process: the two models provided by both communities plus the implementation under
test. It means that the models have to be “equivalent,” even if the design languages are
quite different. Moreover, the system environments must be similar, which is not always
simple regarding the WSON challenges and the limitations for both testing methods. It
is also required that these three entities are correct and conform to each other, which is
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tough due to their different languages, viewpoints, power expressiveness, etc. Finally,
and maybe one of the main problems is that both communities are very often distinct.
Moreover, while clarifying some terms of vocabulary is needed, studies on eventual
common languages, models, or tools are also necessary. We illustrate in the following
some research attempts dealing with the mixing of both techniques.

The first step to orchestrate such bridge-building is to formalize the methodology for
designing WSON protocols. Efforts have been achieved in that way by reimplementing
the protocol stack layers of a simulated platform by utilizing formal refinement-based
methodologies [Sgroi et al. 2000]. This enables the testers to perform architecture
exploration much more quickly than using informal design techniques. Furthermore,
the objective of this platform is to provide a entire product containing SW/HW. This
formal design approach allows the correct partitioning between SW and HW, and hence
prevents errors. Therefore, though this approach is not particularly dedicated to the
validation of WSON protocols, it reveals that the design efforts for observing and/or
controlling every functional and nonfunctional protocol aspects are necessary but costly.

By the way, research efforts have also attempted to cope with the language trans-
formation mechanisms or their diverse and irrelevant expressiveness power. Fehnker
et al. [2007] proposed a single top-level graphical model for simulation and model
checking with the ability to easily collect, observe, and analyze the results. This kind of
approach is mentioned as a “bridging-language” by the authors. In fact, it is currently
quite relevant regarding their results and also in taking into account the applied in-
terference model which has been verified and experimentally validated. Nevertheless,
one of the issues, and not the least, is that a new simulator and dedicated specification
language has to be used. This once again raises the difficulty for both communities of
merging their efforts and adjusting their tools and languages accordingly.

Another interesting study was devoted to applying a formal testing approach merged
with an emulated NS-2 platform [Maag et al. 2008]. Nevertheless, the specification con-
fronted a huge number of topologies and, as previously mentioned, the generation of
test sequences may lead to a state space explosion. The authors therefore applied the
concept of nodes self-similarity, which allows mapping a route viewed by the imple-
mentation under test (IUT) for a given message in a real network with a path of the
specification containing only three nodes. Hence, since the execution of test sequences
(generated from this minimized formal model) on a real implementation is rather tough
in life testing, the authors advocate for applying them through an emulated platform
connected to a simulated mobile ad hoc network. A MANET routing protocol was tested
in this manner. Notwithstanding, still many testing inconclusive verdicts have been
provided. This is especially due to the unreliability of radio communications and be-
cause of the unexpected messages sent in the real network and not planned in the
minimized model. This shows that even if we map formal models on an informal tool
(such as a simulator/emulator), aspects concerning the other running protocols (such
as 802.11) have to be taken into account through the formal approaches.

7.3. Ways for Converging

As mentioned before, nonfunctional aspects are mainly studied through performance-
based tools and mathematical analysis. Nevertheless, formal approaches are more
and more concerned about Quality-of-service (QoS) requirements and performances
[McIver and Fehnker 2006; McIver 2006; Watteyne et al. 2005; Bhargavan et al. 2002b].
Unfortunately, it is clear that techniques for particular performance criteria for WSONs
are still not tailored enough. Indeed, even if verification techniques may be applied to
model checking, then the correctness of the requirements, the validation aspects are
not reached, especially due to nonrealistic and incomplete formal models.
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Based on this observation, it is interesting to reason backwards in studying works
dealing with functional properties through nonformal approaches. Actually, this is met
in almost all articles describing results obtained from simulators/emulators. Indeed,
functional behaviors are implemented in those tools and performance results are based
on these behaviors. That is the reason why the authors of Verisim [Bhargavan et al.
2002a] evaluated the correctness of the functional properties implemented in such
performance-based tools. Verisim is a model combining NS-2 and the trace verification
component provided by the monitoring and checking system, namely, MAC [Kim et al.
1999]. The goal is to generate an NS-2 trace T and to verify if the expected prop-
erties are included in the implementation I according to a scenario S. Finally, Kim
et al. [1999] showed that the AODV implementation in NS-2 was false regarding some
properties, for instance, the initial value for the hops number in a RREP. This work
is very interesting and rather disturbing, raising several issues regarding the effi-
ciency/reliability of simulation/emulation concerning the correctness of the functional
behaviors.

But what does it mean exactly? Are all previous results obtained with NS-2/AODV
false, and therefore not to be studied anymore? Actually not, because even if the per-
formance results are noticeably distorted, a global understanding of the nonfunctional
aspects are notwithstanding provided. Nevertheless, the most relevant meaning in that
observation is the necessity of merging both formal and nonformal approaches to de-
liver the best results concerning both functional and nonfunctional WSON properties.

Nowadays, we may notice that while most of the functional properties are stud-
ied applying formal approaches, the nonfunctional ones are mainly tackled through
nonformal techniques. And despite the increasing needs, especially with the WSONs
becoming a trend and a matter of necessity in many domains, the melting idea is rarely
met. “Rarely” because we may indeed cite one very promising work [Christmann et al.
2008]. In that article, the authors first presented a technique to associate model-driven
development methods and a formal description technique (SDL) to design and specify
an ad hoc protocol. But the very interesting step was the use of these first results to
tackle model-driven performance simulations through NS-2. Indeed, the main result
was to transform a complete SDL formal specification into an NS-2 executable model.
However, even if that first article is relevant in a way for converging both worlds, much
work is still to be done. Therefore, to cope with this needed blend, many targets may
be pointed at. First, the languages used have to be commonly accepted by all communi-
ties. That is, it is nonsense studying different aspects of a same protocol (or worse, the
same aspects) by using different languages. The languages should evolve (or be trans-
formed from one phase to another) so they are able to take into account functional and
nonfunctional properties. In this way, these languages could be applied to check the
requirements (for verification), to generate test sequences (for testing), and to analyze
the performance of a protocol. Thus, formal and nonformal techniques would be used
harmoniously, providing common and real results.

8. CONCLUSIONS

Wireless self-organizing networks (WSONs) have attracted considerable attention from
the network research community. Nevertheless, the success of WSON-related applica-
tions is strongly related to the well-done validation of properties of the network proto-
cols involved. In this article, we have investigated the existing validation approaches
and discussed their components and similarities. We have discussed the particularities
introduced by multihop wireless networks and how to take advantage of similarities
between the validation approaches to obtain complementary techniques. In summary,
our goal was (1) to discuss the foundations of validation techniques and the difficulties
imposed by WSONs characteristics, and (2) to give hints of open research problems.
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