
1

Verification of Interoperability Security Policies by Model Checking

Mazen El Maarabani∗, Ana Cavalli∗, Iksoon Hwang∗ and Fatiha Zaïdi†
∗IT/ TELECOM & Management SudParis, EVRY, F-91011

Email: {mazen.el_maarabani, iksoon.hwang, Ana.Cavalli}@it-sudparis.eu
†Univ. Paris Sud, LRI; CNRS Orsay, F-91405;

Email: Fatiha.Zaidi@lri.fr

Abstract—Access control policies are the key point for a
secured interaction in business community. In general, an infor-
mation system has to include an interoperability access control
security policy to regulate the access from other systems to its
resources. The security policy specifies a set of rules that defines
the privileges of any subject accessing to the information system
resources. In this paper we provide an approach to verify the
correctness of contextual based interoperability access control
security policies which are integrated in a system model. Security
rules are initially described using the organization to organization
model (O2O). We first propose an approach to transform O2O
security rules to the well known Linear Temporal Logic (LTL).
In order to instantiate the LTL formulae from a set of O2O
security rules, we provided a mapping between the elements of
the O2O security rule and the elements of the functional model
in which the security rules are integrated. The resulted LTL
formulae are used to verify the correctness of the security rules
by model checking.

Keywords: OrBAC, model-checking, LTL, interoperability
security policy.

I. INTRODUCTION

Access control security policies are the key point for modern
infrastructures. Nowadays each organization defines an access
control security policy that is responsible for efficiently and
effectively managing the organization’s resources on which its
users can perform actions. An access control security policy is
a set of rules that defines the desired behavior of a user within
an organization. Accordingly, each action performed by a user
on the organization resources is administrated by the system
security policy.

Recently, there is an increasing need of interaction in
business community due to the need of exchanging and sharing
resources. Thus, each organization that wants to interoperate
with other organizations has first to define its own inter-
operability access control security policy. The policy aims
to regulate the access to an organization’s resources when
interacting with other organizations.

The local security objectives of an organization has to be
maintained while exchanging and sharing resources with other
organizations. In order to accomplish a secured interopera-
tion, [4] has proposed solutions to specify the interoperability
security policy without conflicts with the local one.

Specification of a security policy is actually no longer
restricted to permissions. A security policy may include three
different types of security rule: permission, prohibition and
obligation. Intuitively, a prohibition is a negative permission
implying that one must not perform some action. An obligation

is associated with an action someone must perform and is
usually triggered when some conditions are satisfied.

The increasing complexity in the requirements of secured
interactions between systems urges security models to handle
more flexible and dynamic security policies [5]: security rules
in these policies are no longer static but dynamic, depending
on the context. The advantage of such dynamicity is to provide
a self-adaptive access control security policy that is aware of
changes in the interoperability environment.

After the specification of the interoperability access control
security policy using a security model, it is strongly necessary
to verify whether it behaves as required by the original security
requirements. Existing work in this domain can be divided in
two approaches: 1) the first approach [10] aims to integrate
the access control security policy in the functional model of
the system. The resulted model can be used to verify security
properties or to generate test cases by model based testing.
2) The other approaches [1], [9] model only the security
policy using a formal model, Petri nets for instance, and verify
some security properties in the model. This method could be
less interesting when we consider contextual security policies
which involves the functional behavior of a system.

In this paper we propose an approach to verify the correct-
ness of contextual based interoperability access control secu-
rity policy which is integrated in a functional model against
its specification by model checking. We use O2O model to
specify the interoperability security policy. This model cannot
be directly used to verify the correctness of a security policy.
Thus, we propose to transform the O2O rule into the Linear
Temporal Logic. This logic allows to formalize properties that
can be checked in a system execution by model checking such
SPIN [8] to verify that all the executions of the model in which
the policy is integrated respect these properties. The choice of
the SPIN model-checker is motivated by the fact that it is an
efficient and well accepted model-checker that relies on well-
established algorithms that can manage huge specifications.
It provides several means to handle the state space explosion
such as compression algorithms, different levels of abstraction
by states fusion, a bit-state space vector and so on. The
contributions of the paper are manifold:
• We provide a method to translate from O2O the three

types of security rules (which are permission, prohibition
and obligation) into linear temporal logic formulae (LTL).

• We provide a method to instantiate the LTL formulae
based on a set of O2O security rules.

• A case study is provided as a proof of concept of our
method.

2

The remainder of the paper is organized as follows. Sec-
tion II presents the basic concepts needed for this work. In
section III and IV we describe our approach to transform the
O2O contextual based access control security rules into LTL
formulae. In section V, the verification framework is defined.
It also gives the experimental results to show the applicability
of our approach. Section VI discusses the related work and
section VII concludes the paper.

II. PRELIMINARIES

A. Organization to Organization Model

The organization access control language is an access and
usage control model based on a sorted first order logic [3].
Thus, operators such as conditional (if/then) statement (←),
conjunction (∧), disjunction (∨) and negation (¬) has the same
meaning as in a first order logic. The concept of organization
is central in OrBAC. Intuitively, an organization is any entity
that is responsible for managing a security policy. Each organi-
zation can use OrBAC to specify its own security policy at the
organizational level that is abstracted from the implementation
of this policy. Thus, instead of modeling the policy by using
the concrete and implementation-related concepts of subject,
action and object, the OrBAC model suggests reasoning with
the roles that subjects, actions or objects are assigned in the
organization. Thus, a subject is abstracted into role which is
a set of subjects to which the same security rule applies.
Similarly, an activity and a view are respectively a set of
actions and objects to which the same security rule applies.

Definition 1: A security rule is a relation between an orga-
nization role, views, activities and context. It is defined as a
role having permission, prohibition or obligation to perform
an activity on a view within an organization.
A security rule is expressed as follows:
SecurityRule(org,modality(role, activity, view, context))

Where modality belongs to {permission, prohibition,
obligation}. OrBAC defines two types of context [5]: a state
based context and an event based context. The state based
context specifies boolean conditions. The event based context
describes an event that has to be performed in order to
activate the security rule. OrBAC defines logical conditions
to characterize when contexts are active:
Hold(org, subject, action, object, context)

means that context context holds between subject, action
and object within org.

Or-BAC model supports the O2O approach to manage
interoperability between components having their own policies
defined by different organizations [4]. The O2O approach
relies on the concept of virtual private organization (VPO) to
designate the sub-organization in charge of the interoperability
access control. To explain the basic principles of O2O, let us
consider that a given organization A wants to interoperate with
another organization B. In this case, each organization has
to define a Virtual Private Organization (VPO) respectively
called A2B and B2A. The VPO A2B is associated with a
security policy that manages how subjects from the grantee
organization A, O_grantee, may have an access to the grantor
organization B, O_grantor. We say that the VPO A2B manages

the interoperability security policy from organization A to
organization B. The VPO B2A is similarly defined to control
accesses of subjects from organization B to organization A.

orgA

VPO
B2A

orgB

VPO
A2B

Authority sphere

Figure 1. Interaction Between Two Organizations in O2O Framework

Thus, in a VPO, the O_grantor organization can define
roles, activities and views and associate these roles, activities
and views with contextual security rules as in a classical
organization of the OrBAC model. In O2O, the concepts
of authority sphere and management sphere specifying who
creates and manages the interoperability security policy are
introduced. Figure 1 illustrates the O2O framework.

B. Linear Temporal Logic
In this section we will introduce the linear temporal logic

(LTL) [8]. The logic allows to formalize properties of a
path in a computation tree unambiguously and concisely with
the help of a small number of special logical operators and
temporal operators. Given a set of atomic propositions ℘ where
{φ, ϕ} ⊆ ℘, LTL formulae are constructed inductively as
follows. If φ and ϕ are formulae then:
Logical operators:

1) φ ∧ ϕ (logical conjunction), φ ∨ ϕ (logical disjunction)
are also formulae and ¬φ (logical negation) is a formula.

2) (φ −→ ϕ) (logical implication) and (φ←→ ϕ) (logical
equivalence) are formulae.

3) > and ⊥ denotes true and false respectively.
Temporal operators:

1) <> φ, []φ and φUϕ are formulae, where:
[] (always) the formula []φ holds if the formula φ holds in
all the states of the path.
<> (eventually) the formula <>φ holds if the formula φ
eventually holds in a state of the path.
U (until) The formula φUϕ holds, if φ holds until ϕ occurs,
i.e., there is a state on the path at which ϕ holds, and at every
state before φ holds.

III. DECOMPOSITION OF THE TRANSFORMATION

An O2O security rule can be decomposed into the following
three entities:
• An active security rule: the security rule is considered

active which means that this rule is not constrained by a
context or the context is already satisfied.

• A state based context.
• An event based context.

In this section we define the LTL formulae that describe each
of the above entities. The motivation behind this decomposi-
tion is to show how each part of a contextual based security

3

policy can be expressed by LTL formulae. The result of this
transformation will be used to compose a contextual based
security rule in LTL. Note that this decomposition is useful
when not all the security rules are constrained with a state
based or an event based context.

The differentiation between these two types of context
depends on the level of abstraction in the system model. The
condition of an event based context expresses a behavior in
a system model that should be performed in order to activate
the security rule. A state based context is represented in the
system model with boolean variables or functions given by
an oracle whether if some conditions are satisfied or not. In
this paper it is assumed that the system model and the O2O
security rules are defined in the same level of abstraction.

A. Security Rule Transformation

An O2O security rule is defined as follows:
securityRule(V PO,modality(role, activity, view,
context))

We denote by S and O the formulae that represent respec-
tively a subject of role and an object of view. We denote by
Reqr, the formula that represents the request to perform an
action of activity. This request can generate several possible
outputs in the functional model. For instance this request can
be granted or denied. We denote by AckReqr the formula that
describes the expected output generated after the execution
of the security rule. The other possible outputs that can be
generated form the request are represented by the formula
NAckReqr .

In the case where the modality of the O2O security rule is
a permission or a prohibition, the security rule is active when
the value of the request, subject and object meets this rule.
The secured system generates a specific response when the
security rule is executed. Formally, this can be expressed with
an LTL formula as follows:
Permission or prohibition : Reqr ∧ S ∧ O →<>
(¬NAckReqr U AckReqr)))

An obligation rule represents an action that has to be per-
formed by a subject on an object of the secured system. Thus,
it is formally defined using LTL as follows:
Obligation : (Reqr ∧ S ∧ O) ∧ ((Reqr ∧ S ∧ O) →<>
(¬NAckReqr U AckReqr)))

B. State based context Transformation

A state based context is defined in O2O as follows:
Hold(V PO, subject, action, object, contexts)←
conditions

This description means that contexts is true for a specific
subject object and action and when the logical conditions are
true. Let us denote by Cs the formula representing the logical
conditions of the state based context. Thus, the state based
context can be described in LTL as follows:
Contexts : Cs ∧ (Cs → Reqr ∧ S ∧O)

Thus if the logical conditions specified in Cs does not occur
in a system execution, contexts remains false. In the case

where the formula Cs is satisfied, the context is only true
for a specific subject object and action which are respectively
specified in the formulae S, O and Reqr.

C. Event based context Transformation

In the case of a permission rule, an event based context
expresses a pre-obligation which specifies an action that has
to be performed in order to activate the permission rule. In the
case of a prohibition rule, an event based context specifies that
after performing a specific activity, a user will be prohibited
to perform another one on the secured system. An obligation
rule can be triggered when specific action is executed on
the secured system. O2O defines an event based context as
follows:
Hold(V PO, subject, action, object, contexte)←
After do(subject′, action′, object′)

Thus, in this case the context contexte is true for subject,
object and action in the state which follows the occurrence
of the action do(subject′, action′, object′). We denote by Ce

the formula that describes this action. The event based context
is represented in LTL as:
contexte : Ce ∧ (Ce → Reqr ∧ S ∧O)

Thus if the action described in Ce does not occur in a system
execution, contexte remains false. In the case where the
formula Ce is satisfied, the context is only true for a specific
subject object and action which are respectively specified in
the formulae S, O and Reqr.

Let us denote by S′, O′ and Reqe the formulae representing
respectively subject′, object′ and action′. The formula
AckReqe represents the expected output specifying that the
action of the event based context is successfully performed.
The formula NAckReqe describes the other possible output
that can be generated by the secured model in response to this
request. The formula Ce is satisfied only when the behavior
that it describes is performed. Thus, we define Ce with the
following formula:
(Reqe ∧ S′ ∧ O′) ∧ ((Reqe ∧ S′ ∧ O′) →<>
(¬NAckReqe U AckReqe))

IV. CONTEXTUAL BASED SECURITY RULE
TRANSFORMATION

In this section we define the LTL formulae describing the
contextual based interoperability access control security rules.
The notation of an O2O security rule is given in the following:
securityRule(V PO,modality(role, activity, view,
contexts ∧ contexte))

We aim to verify the correctness of contextual based security
rules. Thus, The LTL formulae that describe a security rule
have to satisfy the following:
• If in a system execution the request (described by Reqr∧
S ∧O) that activates a security rule is not satisfied, then
the two LTL formulae describing this security rule has to
be satisfied as in this case the correctness of the security
rule could not be violated.

• If the event based context and the state based context
are satisfied, then the security rule should be activated.

4

Accordingly, when the security rule is executed, a specific
response should be generated by the system.

• If the state based context or the event based context are
not satisfied, then the security rule should not be active.
Thus, this rule cannot be executed.

In the case of a non active permission rule or prohibition
rule, this rule cannot be executed. Thus, the output described in
AckReqr should not be generated in response to Reqr∧S∧O.
We describe this behavior in LTL as follows:
not_active_permission or not_active_prohibition :
Reqr ∧ S ∧O →<> ¬AckReqr

The behavior described in an obligation rule is executed only
when the conditions related to its execution are satisfied (these
conditions can be defined in a state based context or event
based context). Thus the LTL formula that describes a non
active obligation rule is defined as follows:
not_active_obligation : ¬ Reqr ∧ S ∧O
A contextual based permission security rule is described with
two LTL formulae:
F1 : contexte → (contexts → permission)
F2 : (¬contexte ∨ ¬contexts)→ not_active_permission
The formula F1 describes that a permission security rule can
be executed only if the two contexts are satisfied. In the case
where one or both of the contexts are not satisfied, the formula
F2 verifies that the permission rule is not active. In the case
where one or both of the context types are not required for
a permission rules, we simply replace the formulae contexte
and/or contexts with the formula >. The formulae defining a
contextual based prohibition or obligation rule are similar to
the permission rule case.

A. LTL Formulae Instantiation

In this section we will provide a way to instantiate the LTL
formulae based on a set of O2O security rules. This approach
is in two steps. First, we relate the O2O parameters to elements
that correspond in the functional model. Then, we use the
obtained values to instantiate the LTL formulae.

The action of an O2O security rule can be related to a
specific request and the possible outputs that can be generated
by this request. Then it is possible to narrow down the number
of outputs to one specific output by considering the security
rule modality. The subject and object of the security rule are
represented as variables in the functional model or parameters
in the request message. A state based context is represented
with functions or boolean variables in the functional model.
It gives an oracle whether the context is satisfied or not.
Therefore it is possible to map a state based context to a set
of boolean functions or boolean variables. An event based
context represents a behavior that has to be performed in
order to activate the security rule. Thus, the action of the
context is related to a request and an output describing that the
action of this event is successfully performed. The subject and
object of the context are described with variables or messages
parameters in the functional model. This mapping can be done
by using a table that relates each element of an O2O security
rule to the element that corresponds in the functional model.

In the next step we use the mapping result to instantiate LTL
formulae. For instance, the formula Reqr ∧S∧O represents a
request sent from a specific subject targeting a specific object.
Thus, using the mapped values of the action, the subject and
the object of an O2O security rule, it is easy to define the LTL
formula that verifies this property.

V. SECURITY RULE VERIFICATION

As a proof of concept, we exercise our approach on a
hospital network case study. A hospital network is a network or
group of hospitals that work together to coordinate and deliver
a broad spectrum of services to their community. We consider
the case where the hospital network consists of two hospitals,
hospital A and hospital B. It is assumed that each hospital has
its local security policy to manage the privileges of its local
users. The following roles exist in the two hospitals:
• doctor: A doctor on duty, he/she can have any speciality;
• nurse: A nurse on duty, a nurse is in charge of patients

within the department he/she belongs;
• Aduser: A user in the administrative staff;
• ITuser: A user in the Information technology staff.

It is also assumed that in both hospitals a patient has a medical
report, data related for payment and some sensitive data which
is related to personal information (like previous medical report,
insurance company, etc.). Moreover, it is possible for a security
rule to consider the roles as views. In such cases the activity
of the security rule will target these roles.

We consider only the one way of interaction, from hospital
A to hospital B. Thus, the resources to be accessed by the
subjects of hospital A, such as medical reports, sensitive data
and payment files of patients are located in hospital B. We
will index all the roles of hospital A with the letter A.

A. Building the Model

We initially defined an interoperability access control secu-
rity policy as a set of requirements that defines the privileges
of each role of hospital A. Here are three different examples
of these requirements:

1) A doctor from hospital A must be able to access infor-
mation about the medical report, located in hospital B,
of all the patients.

2) A doctor in duty from hospital A is allowed to do any
action on the medical report of a patient in emergency
context.

3) The system is obligated to notify a doctor after editing
one of his/her patient’s medical reports by a doctor from
hospital A.

We build a partial model of a hospital B that describes the be-
havior which is involved by the interoperability access control
security policy. We based on the work done in [10] and [7]
to integrate respectively the local and the interoperability
security policy in the functional model of hospital B. We
used PROMELA as specification language, this language is
compatible with the SPIN model checker. For lack of room,
we do not provide in this paper all the details of the modeling.

5

O2O Functional Model LTL
Security rule action notify_Edit ?notify_inCharge(s,o) fromEnv?[notify_inCharge(s,o)]

!notification_confirmed(0,0) toEnv?[notification_confirmed(0,0)]
Security rule subject system message parameter s=0 message parameter s=0
Security rule object O message parameter o=hispatient[100-o’] message parameter o=hispatient[100-o’]
State based context - - >
Event based context action edit_file ?edit_file(s’,o’) fromEnv?[?edit_file(s’,o’)]

!edit_grant(0,0) toEnv?[edit_grant(0,0)]
Event based context subject S’ message parameter s’∈ [1..10] message parameter s’∈ [1..10]
Event based context object x.pdf message parameter o’∈ [100..150] message parameter o’∈ [100..150]

Table II
THE MAPPING TABLE

hospital B

+

VPO

SPIN

Counter

Examples

Security

Rules
LTL claims

Figure 2. Verification Process

B. Defining the Verification Process

We aim to verify the correctness of the interoperability
access control security policy which is integrated in the
hospital B model against its specification modeled using O2O.
Thus, the system model whose executions has to satisfy the
access control security policy objectives consists of hospital B
in which the interoperability access control security policy is
integrated. The other entities that interact with the hospital B,
such as the local entities of hospital B and the hospital A, are
the environment. Figure 2 illustrates the verification process.

C. Description of the Interoperability Policy Using LTL

We specify the requirements of the interoperability security
policy using the O2O model. As a result, we got twenty three
O2O security rules.

Interoperability scurity policy O2O LTL
Set of requirements 23 security rules 46 formulae

Table I
RESULTS OF THE TRANSFORMATION OF THE INTEROPERABILITY

SECURITY POLICY

We generated for each of the O2O security rules two LTL
formulae (Table I summarizes the results). The LTL formulae
are then instantiated with the values of subjects and objects
that activate the original O2O security rule.

Consider the requirement "The system is obligated to notify
a doctor after editing one of his/her patient’s medical reports
by a doctor from hospital A". It specifies an obligation rule
with an event based context. The O2O notation of this rule is
given in the following:
securityRule(V POA2B , obligation(system, notify, doctor,
MedReportEdit))

The context MedReportEdit can be described as:
hold(V POA2B , system, notify_Edit,O,MedReportEdit)←

After do(S′, edit_file, x.pdf)
In our PROMELA model each role is represented with a
sequence of values which will be assigned to subjects of this
role. For instance, a doctor of hospital A can have one of the
values of [1..10]. The role system is composed of only one
subject with the value 0. The values [100..150] are assigned
to the medical reports. We also defined an array hispatient to
specify who is the doctor in charge of each medical report.
Table II gives the mapping that corresponds to this example.
We defined the following formulae:

obligation : fromEnv?[notify_inCharge(s, o)]&&
(fromEnv?[notify_inCharge(s, o]→<>
toEnv?[notification_confirmed(0, 0)])

Ce : fromEnv?[edit_file(s′, o′)]&&
(fromEnv?[edit_file(s′, o′)]→<>
toEnv?[edit_grant(0, 0)])

contexte : Ce&&(Ce →
fromEnv?[notify_inCharge(s, o)])

not_active_obligation : ¬fromEnv?[notify_inCharge(s, o)]

The Two formulae describing the obligation rule are:
O1 : contexte → obligation
O2 : ¬contexte → not_active_obligation
Note that the provided LTL formulae respect the notation of
the SPIN model checker. The parameters s, s′, o and o′ has
to be instantiated with the values defined by the mapping in
Table II. It is possible to use a script that automatically assigns
s, s′, o and o′ the values that fits the mapping.

D. Verification of Correctness
The generated LTL formulae are used to define claims in

the SPIN model checker. The claims represent properties that
should be satisfied during the execution of a model. We verify
that all executions of the model are accepted by these claims.
If the execution of the claim does not match with the execution
of the model, SPIN will produce a counter example that allows
the execution to be replayed.

To show the applicability of our method we injected some
faults in the functional model. For instance we investigate the
case where the behavior of the obligation rule (specified in
the above subsection) is removed from the functional model.
Thus, after a medical file of a patient is edited by a doctor of
hospital A the system does not notify the doctor in charge of
this patient.

6

!edit_file(1,100)

?edit_file(1,100)

!edit_grant(0,0)

?edit_grant(0,0)

Hospital B Environment

Figure 3. The Counter Example Generated by SPIN

When running the verification process a counter example
is generated by SPIN when checking the formula O2. This
counter example is given in Figure 3. We also verified whether
the obligation action actually notify the right doctor by veri-
fying if the value of o corresponds to the doctor in charge of
the medical report represented in o′.

VI. RELATED WORK

Several works have proposed solutions to specify security
properties in a formal way in order to verify or test some
security properties. In [7] the authors proposed a formal way
to integrate O2O security rules in the functional model of a
system. The system is modeled using extended automata. The
resulted model is used to generate test cases using a dedicated
tool. In another work [9] the authors proposed to verify
some security policy properties using colored Petri net. They
defined security properties such as completeness, consistency,
termination and confluence in Petri net terminology. In [1] the
authors proposed to model e-contract security rules such as
permission, prohibition and obligation using timed automata.
Then they verified that the automata will never reach an
undesirable state. Ammar Masood and al. [11] constructed an
FSM model of the RBAC (role based access control) policy
and then generated test cases from the model using the well
known W-method. The proposed technique provides complete
fault detection with respect to the RBAC fault model that can
be mapped to Chow’s fault model. In [6], authors propose an
approach to achieve testing of network security rules. They
express the network behavior using labeled transition systems
formula. The security rules are specified using a variant of
the Linear Temporal Logic. Then, for each element of their
language and each type of rule, they propose a pattern of test
called a tile. Then, they combine those tiles into "complete"
test cases. The test cases are used to test the conformance of
the implemented rules with respect to a global specification
of security policy for a network of interconnected systems.
Also [2] has proposed an approach to security testing of
web-based applications in which test cases are automatically
derived from counterexamples found through model checking.

VII. CONCLUSION

In this paper, a formal approach to verify the correctness of
contextual based interoperability access control security policy
is presented. The control access security policy is initially
specified using O2O model. In order to verify the correctness

of a security policy which is integrated in a functional model,
we propose an approach to transform O2O security rules to
the well known Linear Temporal Logic. We show that an
O2O security rule can be described using two LTL formulae.
In order to instantiate an LTL formula from a set of O2O
security rules, we provided a mapping between the elements
of the O2O security rule and the elements of the LTL formulae.
Finally, we carried out a case study on a hospital network to
show the applicability of our method.

As future work, we are investigating the possibility to
adapt these results for monitoring testing. Thus, the traces
of two systems that communicate according to an interoper-
ability security policy will be collected. These traces will be
checked with respect to the LTL formulae requirements and
automatically a verdict of conformance of the implemented
interoperability security policy with its requirements will be
emitted. This will enable us to detect on real-time system
crashes and security rules violations and most importantly
to be able to stop this kind of malicious behaviors without
any delay. Another possibility is to use the model checker
to produce active test cases covering the requirements by
using the counter-example provided by SPIN. In this case, the
property will become a non desirable property to be checked.
To perform such work, we will get inspired by [12].

REFERENCES

[1] A. Abou El Kalam and N. Idboufker. Specification and verification of
security properties of e-contracts. In 8th International Conference on
Communications, pages 427 – 430, 2010.

[2] A. Armando, R. Carbone, L. Compagna, K. Li, and G. Pellegrino.
Model-checking driven security testing of web-based applications. In
Third International Conference on Software Testing, Verification, and
Validation Workshops, pages 361–370, Washington, DC, USA, 2010.

[3] C. Baral and J. Lobo. Formal characterization of active databases. In
Proceeding of international workshop on logic in databases, pages 175–
195, 1996.

[4] F. Cuppens, N. Cuppens, and C. Coma. O2O : Managing security
policy interoperability with virtual private organizations. In 13th annual
workshop of HP Openview University Association, HP-OVUA, may 21-
24, Côte d’Azur, France, 2006.

[5] F. Cuppens and N. Cuppens-Boulahia. Modeling contextual security
policies. volume 7, pages 285–305, Berlin, Heidelberg, 2008.

[6] V. Darmaillacq, J.C. Fernandez, R. Groz, L. Mounier, and J.L. Richier.
Test generation for network security rules. pages 341 – 356, New York,
2006. Springer.

[7] M. El Maarabani, I. Hwang, and A. Cavalli. A formal approach for
interoperability testing of security rules. volume 0, pages 277–284, Los
Alamitos, CA, USA, 2010. IEEE Computer Society.

[8] G. Holzmann. Spin model checker, the primer and reference manual.
Addison-Wesley Professional, first edition, 2003.

[9] H. Huang and H. Kirchner. Formal specification and verification of
modular security policy based on colored petri nets. volume 99, Los
Alamitos, CA, USA, 2010. IEEE Computer Society.

[10] W. Mallouli, J. Orset, A. Cavalli, N. Cuppens, and F. Cuppens. A
formal approach for testing security rules. In Proceedings of the 12th
ACM symposium on Access control models and technologies, SACMAT
’07, pages 127–132, New York, NY, USA, 2007. ACM.

[11] A. Masood, R. Bhatti, A. Ghafoor, and A. Mathur. Scalable and effective
test generation for role-based access control systems. volume 35. IEEE
Computer Society, 2009.

[12] F. Zaïdi, M. Lallali, and S. Maag. A component based testing technique
for a manet routing protocol. In IEEE AICSSA Conference, pages 1–7,
2010.

