We illustrate how linear algebra calculations can be enhanced by statistical techniques in the case of a square linear system $Ax = b$. We study a random transformation of A that enables us to avoid pivoting and then to reduce the amount of communication. Numerical experiments show that this randomization can be performed at a very affordable computational price while providing us with a satisfying accuracy when compared to partial pivoting. This random transformation called Partial Random Butterfly Transformation (PRBT) is optimized in terms of data storage and flops count. We propose a solver where PRBT and the LU factorization with no pivoting take advantage of the current hybrid multicore/GPU machines and we compare its Gflop/s performance with a solver implemented in a current parallel library.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Dense linear algebra, linear systems, LU factorization, randomization, multiplicative preconditioning, graphics processing units

ACM Reference Format:

1. INTRODUCTION

Pivoting is a classical method to ensure stability in linear system solutions. It aims at preventing divisions by zero or too-small quantities in the process of Gaussian Elimination (GE). The complete pivoting procedure permutes rows and columns of the input matrix so that large nonzero matrix elements are moved to the diagonal to be used as “pivot”. There is no floating-point operation in pivoting but it involves irregular data movements ($O(n^3)$ comparisons for the complete pivoting, where n is the matrix size). To reduce this overhead, the usual technique is Gaussian Elimination with Partial Pivoting (GEPP) where at each stage of the elimination, the pivot is searched within a column and only rows are permuted, reducing the number of comparisons to $O(n^2)$.

Note that there also exists an intermediate pivoting strategy called “rook pivoting”
where the search for a pivot requires a number of comparisons comprised between \(O(n^2)\) and \(O(n^3)\) ([Higham 2002, p. 159]). The stability of GE is strongly related to the growth factor [Higham 2002, p. 165] that measures how large the entries of the matrix become in the process of elimination. As in many numerical linear algebra algorithms, the choice of a pivoting strategy is the result of a trade-off between stability concerns and Gflop/s performance. In respect with that, a good GE algorithm should minimize the growth factor (to provide backward stability) and the amount of pivoting (to avoid penalizing performance). The upper bounds on the growth factor for GEPP might be much larger than for complete and rook pivoting (see [Higham 2002, p. 169]) and it can be unstable for some very specific examples [Wright 1993]. However GEPP turns out to be very stable in practice and has been implemented in standard linear algebra libraries (e.g., LAPACK [Anderson et al. 1999]).

With the advent of architectures such as multicore processors or Graphics Processing Units (GPU), the growing gap between communication and computation efficiency made the communication overhead due to pivoting more critical. Moreover, in the LAPACK implementation of GEPP, rows are swapped at once during pivoting, which inhibits the exploitation of more asynchronicity between block operations. Several pivoting techniques, potentially less stable than partial or complete pivoting, can be used to minimize the communication like pairwise pivoting [Sorensen 1984] or threshold pivoting [Duff et al. 1986] (see Trefethen and Schreiber [1990] for a stability analysis of these pivoting techniques). In particular pairwise pivoting has been implemented in algorithms for multicore machines [Buttari et al. 2009] but this generates a significant overhead since the rows are swapped in pairs of blocks. We also mention, for multithreaded architectures, a pivoting technique called incremental pivoting in Quintana-Orti et al. [2009] based on principles used for out-of-core solvers. Another pivoting technique has been proposed in Grigori et al. [2008] that minimizes the number of messages exchanged during the factorization, leading to a new class of algorithms often referred to as “communication-optimal” algorithms. More specifically for GPUs, the pivoting overhead was reduced by using an innovative data structure [Volkov and Demmel 2008].

To illustrate the cost of pivoting, we plot in Figure 1 the percentage of time due to pivoting in LU factorization (MAGMA\(^1\) implementation) for several sizes of random matrices on a current hybrid CPU/GPU machine (in double precision arithmetic). We observe that pivoting can represent more than 40% of the global factorization time for small matrices and although the overhead decreases with the size of the matrix, it still represents 17% for a matrix of size 10,000.

The fact that pivoting remains a bottleneck for linear system solutions is a motivation to present in this article an alternative to pivoting thanks to randomization.

Statistical techniques have been widely used in linear algebra for instance solving linear systems using Monte Carlo methods [Dimov 2008] or computing condition estimates [Arioli et al. 2007; Kenney et al. 1998]. Statistical properties of Gaussian elimination have also been studied for the non pivoting case [Yeung and Chan 1997] and for the partial and complete pivoting case [Trefethen and Schreiber 1990]. In this article, we describe an approach based on randomization where the original matrix \(A\) is transformed into a matrix that would be sufficiently “random” so that, with a probability close to 1, pivoting is not needed. This technique has been initially proposed in Parker [1995] and Parker and Pierce [1995], where the randomization is referred to as Random Butterfly Transformation (RBT). It consists of a multiplicative preconditioning \(U^TAV\) where the matrices \(U\) and \(V\) are chosen among a particular class of

\(^1\)Matrix Algebra on GPU and Multicore Architectures, http://icl.cs.utk.edu/magma/.
random matrices called recursive butterfly matrices. Then Gaussian Elimination with No Pivoting (GENP) is performed on the matrix U^TAV and, to solve $Ax = b$, we instead solve $(U^TAV)y = U^Tb$ followed by $x =Vy$.

Considering the need to reduce the cost of pivoting on current parallel architectures, we revisit in this article the results given in Parker [1995]. We first define a random transformation referred to as Partial Random Butterfly Transformation (PRBT) which corresponds to an RBT with a limited number of recursions. It will be shown in numerical experiments on a collection of matrices including pathological cases that a small number of recursions (only 2 in practice) is sufficient to get accurate results. We also address the important issue of the condition number of the randomized matrix since the latter is obtained by a multiplicative preconditioning. We finally propose an implementation of PRBT that exploits the particular structure of the recursive butterflies and makes this technique of randomization attractive in terms of Gflop/s and storage. This includes a packed storage for recursive butterflies, efficient computational kernels and exploitation of CPU/GPU architectures to render parallelism.

This article is organized as follows. In Section 2.1 we recall the main definitions of RBT and define PRBT by considering recursive butterfly matrices with possibly less number of recursions. In Section 2.2 we propose a packed storage for the recursive butterfly matrices. In Section 2.3 we show that the multiplication by U^T and V can be efficiently computed by taking advantage of the particular structure of the recursive butterflies and we compute the computational cost of PRBT as a function of the number of recursions. We study in Section 2.4 the effect of PRBT on the condition number of the randomized matrix. Then we show in Section 3.1 by considering test matrices that in practice, at most two levels of recursion are required for recursive butterflies to obtain an accuracy close to that of GEPP. As a result, the cost for the randomization reduces to $\sim 8n^2$ operations, which is negligible when compared to the cost of pivoting. For the sake of stability we also add some iterative refinement steps in the working precision where the stopping criterion is the componentwise relative backward error. For the matrices used in our experiments, we never need more than one iteration. In Section 3.2, we observe that the 2-norm condition number of the initial matrix A is kept almost unchanged by the PRBT randomization. Finally we present in Section 3.3 an
implementation and first performance results for a PRBT solver on a current hybrid multicore/GPU machine and we compare the Gflop/s performance of this solver with the GEPP solver from the parallel library MAGMA. Conclusions and future work are presented in Section 4.

2. RANDOMIZATION

2.1. Definitions

We define here two types of matrices that will be used in the random transformation. We follow the definitions given in Parker [1995] in the particular case on real arithmetic entries.

Definition 2.1. A butterfly matrix is defined as any n-by-n matrix of the form:

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} R_0 & R_1 \\ R_0 & -R_1 \end{pmatrix}$$

where $n \geq 2$ and R_0 and R_1 are random diagonal and nonsingular $n/2$-by-$n/2$ matrices.

Note that a butterfly matrix B can also be expressed as

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} I_{n/2} & I_{n/2} \\ I_{n/2} & -I_{n/2} \end{pmatrix} \begin{pmatrix} R_0 & 0 \\ 0 & R_1 \end{pmatrix}, \quad (1)$$

where $I_{n/2}$ denotes the identity matrix of size $n/2$, that is, B is a product of an orthogonal matrix and a random diagonal matrix. Then the possible orthogonality properties of B depend on how the random diagonal is obtained.

Definition 2.2. A recursive butterfly matrix of size n and depth d is a product of the form

$$W^{<n,d>} = \left(B^{<n/2^{d-1}>} \ldots 0 \right) \times \ldots \times \left(B^{<n/4>} \right) \times \left(B^{<n/2^{d-1}>} \right) \times B^{<n>}$$

where the $B^{<n/2^{k-1}>}_i$ are butterflies of size $n/2^{k-1}$, $k = 2, \ldots, d$ and $B^{<n>}$ is a butterfly of size n.

Note that this definition requires that n is a multiple of 2^d which can be always obtained by “augmenting” the matrix A with additional 1's on the diagonal. Note also that it differs from the definition of a recursive butterfly given in Parker [1995] where $d = \log_2 n$ and the first term of $W^{<n,d>}$ is a diagonal matrix of size n (and thus we have $\log_2 n + 1$ terms).
For instance, if \(n = 4 \) and \(d = 2 \), then the recursive butterfly \(W^{<4,2>} \) would be defined by

\[
W^{<4,2>} = \begin{pmatrix} B_1^{<2>} & 0 \\ 0 & B_2^{<2>} \end{pmatrix} \times B^{<4>}
\]

\[
= \frac{1}{2} \begin{pmatrix} r_1^{<2>} & r_2^{<2>} & 0 & 0 \\ r_1^{<2>} & -r_2^{<2>} & 0 & 0 \\ 0 & 0 & r_3^{<2>} & r_4^{<2>} \\ 0 & 0 & r_3^{<2>} & -r_4^{<2>} \end{pmatrix} \begin{pmatrix} r_1^{<4>} & 0 & r_3^{<4>} & 0 \\ 0 & r_2^{<4>} & 0 & r_4^{<4>} \\ r_1^{<4>} & 0 & -r_3^{<4>} & 0 \\ 0 & r_2^{<4>} & 0 & -r_4^{<4>} \end{pmatrix}
\]

\[
= \frac{1}{2} \begin{pmatrix} r_1^{<2>} & r_1^{<4>} & r_2^{<2>} & r_2^{<4>} \\ r_1^{<2>} & -r_1^{<4>} & r_2^{<2>} & r_2^{<4>} \\ r_3^{<2>} & r_4^{<2>} & r_2^{<2>} & r_2^{<4>} \\ r_3^{<2>} & -r_4^{<2}} & r_2^{<2>} & r_2^{<4>} \end{pmatrix},
\]

where the \(r_i^{<j>} \) are real random entries.

Our motivation here is to minimize the computational cost of the RBT defined in Parker [1995] by considering a number of recursions \(d < \log_2 n \) resulting in the transformation defined below.

Definition 2.3. A Partial Random Butterfly Transformation (PRBT) of depth \(d \) of a square matrix \(A \) is the product:

\[
A_r = U^T A V
\]

where \(U \) and \(V \) are recursive butterflies of depth \(d \).

Then, the process to solve the general linear system \(A x = b \) is the following.

(1) Compute the randomized matrix \(A_r = U^T A V \), with \(U \) and \(V \) recursive butterflies.
(2) Factorize \(A_r \) with GENP.
(3) Solve \(A_r y = U^T b \).
(4) Solution is \(x = V y \).

We recall that the GENP algorithm which is performed on \(A_r \) is unstable, due to a possibly large growth factor. We can find in Parker [1995] explanations about how RBT might modify the growth factor of the original matrix \(A \). To ameliorate this potential instability, we systematically add in our method iterative refinement in the working precision as indicated in Higham [2002, p. 232]. Note that, when applied sparse matrices, PRBT has the drawback of filling the original matrix with nonzero elements.

2.2. Packed Storage for Recursive Butterfly Matrices

We describe here how a butterfly matrix and a recursive butterfly matrix can be stored compactly using respectively a vector and a matrix.

Following Section 2.1, a butterfly matrix has the form

\[
B^{<n>} = \frac{1}{\sqrt{2}} \begin{pmatrix} R_0 & R_1 \\ R_0 & -R_1 \end{pmatrix},
\]

where \(R_0 \) and \(R_1 \) are diagonal random matrices. Then \(B^{<n>} \) can be stored compactly in a vector \(w \) of size \(n \), where the \(n/2 \) first values are the coefficients of \(R_0 \) and the \(n/2 \) last ones are the coefficients of \(R_1 \).
A multiplication of a dense matrix by a butterfly matrix.

In the computation of $U^T A V$, we observe that each term of the product can be stored in a vector of size n. Thus $W^{<n,d>}$ can be stored compactly in a matrix W_p of size $n \times d$ where the k-th column represents the matrix $B^{<n/2^k→}$, which means that each vector $W((i-1)\cdot\frac{n}{2^d} + 1 : i\cdot\frac{n}{2^d}, k)$ stores the butterfly matrix $B_i^{<n/2^k→}$. As a result, $W^{<n,d>}$ can be obtained at once by choosing randomly the corresponding n-by-d matrix W_p.

2.3. Computational Cost of the Randomized Matrix

In the computation of $U^T A V$, where U and V are recursive butterflies, the elementary operation is a multiplication of a dense matrix A to the left and to the right by a butterfly matrix.

Let $B = \begin{pmatrix} R_0 & R_1 \\ R_0 & -R_1 \end{pmatrix}$ and $B' = \begin{pmatrix} R'_0 & R'_1 \\ R'_0 & -R'_1 \end{pmatrix}$ be two butterfly matrices stored in vectors w and w' using the packed storage defined in Section 2.2. We observe that a multiplication on both sides of A by B and B' can be expressed as

\[
B^T A B' = \frac{1}{2} \begin{pmatrix} R_0 & R_0 \\ R_1 & -R_1 \end{pmatrix} A \begin{pmatrix} R'_0 & R'_1 \\ R'_0 & -R'_1 \end{pmatrix}
= \frac{1}{2} \begin{pmatrix} R_0 & R_0 \\ R_1 & -R_1 \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R'_0 & R'_1 \\ R'_0 & -R'_1 \end{pmatrix}
= \frac{1}{2} \begin{pmatrix} R_0 & 0 \\ 0 & R_1 \end{pmatrix} C \begin{pmatrix} R'_0 & 0 \\ 0 & R'_1 \end{pmatrix}
= \frac{1}{2} \text{diag}(w) C \text{diag}(w'),
\]

where

\[
C = \begin{pmatrix} A_{11} + A_{12} + A_{21} + A_{22} & A_{11} - A_{12} + A_{21} - A_{22} \\ A_{11} + A_{12} - A_{21} - A_{22} & A_{11} - A_{12} - A_{21} + A_{22} \end{pmatrix}.
\]

Then $(B^T A B')_{i,j} = w_i C_{i,j} w'_{j}$, and the computation of $B^T A B'$ requires $4n^2$ flops. This kernel corresponds to a PRBT of depth 1 and will be applied for computing the successive products of the form $B^T A B'$ involved in PRBT. For instance, for $d = 2$ we have

\[
W^{<n,2>} = B^T \begin{pmatrix} B_1^T & 0 \\ 0 & B_2^T \end{pmatrix} A \begin{pmatrix} B'_1 & 0 \\ 0 & B'_2 \end{pmatrix} B' = B^T \begin{pmatrix} B_{11}' & B_{12}' & B_{11}^T A_{11} B_1' & B_{12}^T A_{12} B_2' \\ B_{21}' & B_{22}' & B_{21}^T A_{21} B_1' & B_{22}^T A_{22} B_2' \end{pmatrix} B',
\]

where
which involves four elementary products of the form $B^T A B'$ with butterflies of size $n/2$ and one with butterflies of size n. This requires $8n^2$ flops.

More generally, let A be a square matrix of size n and $M(n)$ the computational cost of a multiplication $B^T A B'$ with B and B' butterflies of size n, then the number of operations involved in the computation of A_r by a PRBT of depth d is

$$c(n,d) = \sum_{k=1}^{d} \left(\frac{(2^{k-1})^2 \times M \left(n/2^{k-1} \right)}{4} \right) = \sum_{k=1}^{d} \left(\frac{4n^2}{4} \right) = 4dn^2.$$

When using the computational kernels mentioned above, the maximum cost obtained in the case of a full RBT is

$$c(n, \log_2 n + 1) \simeq 4n^2 \log_2 n.$$

Our objective in this article is to consider values of d such that $d < \log_2 n \ll n$ so that the randomization via recursive butterflies is computationally inexpensive. We will show in Section 3.1 that in practice two levels of recursion are sufficient to obtain an accuracy close to that of GEPP resulting in a computational overhead of $8n^2$ operations for the randomization.

Similarly to the product of a recursive butterfly by a matrix, the product of a recursive butterfly by a vector does not require the explicit formation of the recursive butterfly since the computational kernel will be a product of a butterfly by a vector, which involves $O(n)$ operations. As a result, the computation of $U^T b$ and $V y$ (steps (3) and (4) of the solution process given after Definition 2.3) can be performed in $O(dn)$ flops and will be neglected in the remainder of this article, for small values of d.

2.4. Condition Number of the Randomized Matrix

A major concern in the multiplicative preconditioning involved in PRBT is to keep the condition number as “unchanged” as possible. Let us denote by $\text{cond}_2(A)$ the 2-norm condition number of a square matrix A and defined by $\text{cond}_2(A) = \|A\|_2 \|A^{-1}\|_2$. Then, with the notations of Section 2.1, we have

$$\text{cond}_2(A_r) \leq \text{cond}_2(U) \text{cond}_2(A) \text{cond}_2(V).$$

Ideally, a recursive butterfly matrix will have a condition number close to 1 so that the condition number of A_r will be close to that of A. In general random matrices tend to be well conditioned [Edelman 1988] but let us study here the particular case of the recursive butterfly matrices.

For an elementary butterfly matrix B of size n, we have

$$B^T B = \frac{1}{\sqrt{2}} \begin{pmatrix} R_0 & R_0 \\ R_1 & -R_1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} R_0 & R_1 \\ R_1 & -R_1 \end{pmatrix}$$

$$= \begin{pmatrix} R_0^2 & 0 \\ 0 & R_1^2 \end{pmatrix} = \text{diag}(r_1, \ldots, r_n)^2,$$

where the r_i are random entries and then we obtain (using, e.g., Saad [2000, p. 231])

$$\text{cond}_2(B) = \sqrt{\text{cond}_2(B^T B)} = \frac{\max |r_i|}{\min |r_i|}. \quad (4)$$

It comes from Equation (4) that the random variables r_i should not be too small to avoid having a large condition number for B.
More generally, a recursive butterfly of depth d is a product of block-diagonal matrices having the form $B = \text{diag}(B_1, \ldots, B_p)$ where $1 \leq p \leq 2^{d-1}$ and the B_i are butterfly matrices of size n/p. Therefore we have

$$B^T B = \begin{pmatrix} B_1^T B_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & B_p^T B_p \end{pmatrix},$$

and $B^T B$ is a diagonal matrix. Then $\text{cond}_2(B)$ can be expressed as $\frac{\max |r_i|}{\min |r_i|}$ where the r_i are random numbers that form the diagonal of $B^T B$.

If the r_i are such that $|r_i| \in [\alpha, \beta] (\alpha > 0)$, then we have $\text{cond}_2(B) \leq \frac{\beta}{\alpha}$ and thus, for U being a recursive butterfly of depth d, we get

$$\text{cond}_2(U) \leq \left(\frac{\beta}{\alpha} \right)^d. \tag{5}$$

This result will motivate the type of random values used in forming the recursive butterflies. In particular, since the bound on the condition number grows with the number of recursions, $\frac{\beta}{\alpha}$ should be close to 1. Parker [1995] generates the random diagonal values used in the butterflies as $\exp\left(\frac{r}{10}\right)$, where r is randomly chosen in $[-\frac{1}{2}, \frac{1}{2}]$ and justifies this choice by the fact that the determinant of a butterfly has an expected value 1. It satisfies also our requirement because $\frac{\beta}{\alpha} = e^{0.1} \approx 1.1052$. Experiments will be performed in Section 3.2 to confirm the good behaviour of this randomization process in terms of conditioning.

3. NUMERICAL EXPERIMENTS

3.1. Accuracy of PRBT

In this section, we compare the accuracy of the linear system solution obtained using GEPP (as it is implemented in LAPACK) and PRBT followed by GENP (in the remainder, this solver will be simply denoted as PRBT). We also compare with GENP and QR. We recall here that the Householder QR factorization is always a good option for solving square linear systems because of its backward stability property [Higham 2002, p. 361] and due to the fact that we do not have to worry about large growth factors (however the computational cost is about twice that of LU).

Experiments were carried out using Matlab version 7.12 (R2011a) on a machine with a precision of $2.22 \cdot 10^{-16}$. In Table I, we consider 19 test matrices of size 1024 where the first 11 matrices come from the Matlab gallery and Higham’s Matrix Computation Toolbox [Higham 2002], the 12-th matrix comes from Foster [1994], the test cases number 13 to 16 come from [Trefethen and Schreiber 1990] and the last 3 matrices are defined in Parker [1995]. Similarly to Parker [1995], the random diagonal matrices used to generate the butterfly matrices described in Definition 2.1 have diagonal values $\exp\left(\frac{r}{10}\right)$ where r is chosen from the uniform distribution in $[-\frac{1}{2}, \frac{1}{2}]$ (using the matlab instruction rand). For all test matrices, we consider the exact solution $x = [1 1 \ldots 1]$ and the right-hand side is set as $b = Ax$.

We report in Table I the 2-norm condition number of the original matrix (Matlab function cond) and the componentwise backward error resulting from the four solvers
considered in this study. This error is defined in Oettli and Prager [1964] and expressed by

$$\omega = \max_{i} \frac{|A\hat{x} - b|_i}{(|A| \cdot |\hat{x}| + |b|)_i},$$

where \hat{x} is the computed solution. We also report the number of recursion steps (REC) used in the PRBT algorithm for the recursive butterflies (parameter d in Definition 2.3). For better stability, we add systematically iterative refinement (in the working precision) when we use PRBT. Similarly to Arioli et al. [1989] and Skeel [1980], the iterative refinement algorithm is activated while $\omega > (n + 1)u$, where u is the machine precision. The number of iterations (IR) in the iterative refinement process is also listed in Table I.

We observe that we never need more than two recursions, which involves for PRBT an extra computational cost lower or equal to $8n^2$ operations. The two matrices gfpp [Higham and Higham 1989] and Foster [Foster 1994] are well-known pathological matrices that maximize the growth factor. For these matrices, PRBT destroys the original structure and gives very accurate results (for these two matrices, one step of iterative refinement was also required for QR to get the best accuracy). GENP fails for 4 matrices (fiedler, $[-1,1]$, $[0,1]$, $[i - j]$) and for each of them, PRBT is as accurate as GEPP. For the matrices fiedler, $[i - j]$ and max(i,j), PRBT gives results that are slightly better than QR.

For 4 matrices (chebspec, condex, randcorr, Turing), using PRBT is not useful because GENP gives a good solution. However this shows that these matrices are not degenerated by the randomization applied to them. On some matrices (circul, augment, normaldata, $[-1,1]$, $[0,1]$), the accuracy of GENP can be improved just by adding
iterative refinement and PRBT is not useful. Iterative refinement turns out to be necessary in some cases when using PRBT but with never more than one iteration. Note that when matrices are orthogonal (orthog or proportional to an orthogonal matrix (Hadamard)), Gaussian elimination has not to be used. These 2 examples have been used only for purpose of testing. In the case of integer-valued matrices (max(i, j), Hadamard), PRBT destroys the integer structure and transform the matrix into a real-valued one.

We also point out that, when A_r is computed with orthogonal matrices obtained by considering $R_0 = R_1 = I_{n/2}$ in Formula (1), instead of random butterflies, then GENP fails (division by zero) for matrices $\{-1, 1\}$, $\{0, 1\}$, and we obtain a backward error close to 1 for Foster and Turing. This illustrates the interest of randomizing to avoid pivoting as expressed in Parker [1995, Theorem 4].

Finally, in all test cases considered in these experiments, PRBT provides us with a satisfying accuracy while requiring an extra computational cost of $O(n^2)$ operations (coming from one or two recursions and possibly one step of iterative refinement).

3.2. Tests on Condition Numbers

In the previous experiments we also computed, for all test matrices, the condition number of the randomized matrix. As expected from the comments in Section 2.4, $\text{cond}_2(A_r)$ is of same order of magnitude as $\text{cond}_2(A)$ and therefore is not listed in Table I.

Let us now study in more details the condition number of the recursive butterflies resulting from the random distribution chosen in our experiments. We represent in Figure 2 the 2-norm condition number (computed using the Matlab function cond) of the recursive butterflies used in the experiments described in Section 3.1. We plot, for each recursion depth, the average condition number obtained for a sample of 500 recursive butterflies of size 1024 and the upper bound on this condition number as expressed in Equation (5). We observe that for small numbers of recursions, the average condition number is very close to its bound (e.g., for $d = 2$, $\text{cond}_2(U) = 1.2026$ and $(\frac{\rho}{\pi})^d = 1.2214$) and that for larger numbers of recursions, the difference between these quantities becomes larger (e.g., for $d = 10$, $\text{cond}_2(U) = 1.5183$ and $(\frac{\rho}{\pi})^d = 2.7183$) and then the upper bound becomes more pessimistic. This is not surprising since for small values of d the difference comes mainly from the statistics.
and for large values, the difference comes also from the nature of the upper bound which is a product of d bounds as explained in Section 2.4. However, as shown in Section 3.1, two recursions are in general enough to get a satisfying accuracy and in that case recursive butterflies are very well conditioned.

3.3. Implementation Details and Preliminary Performance Results

Let us first describe how the randomization via PRBT is implemented. A copy of the original matrix A is made on the GPU and this copy will be updated by the GPU during the randomization process. The computation of the elementary product $B^T A B'$ expressed in Formula (2) is performed by using $\frac{n^2}{4}$ independent threads on the GPU corresponding to a couple (i,j) with $i,j \leq \frac{n}{2}$. Each thread reads and updates 4 values of the original matrix: $A(i,j)$, $A(i+n/2,j)$, $A(i,j+n/2)$ and $A(i+n/2,j+n/2)$. This leads to read and write the matrix only once. Few computations are required to update the values and the main bottleneck comes from the read/write operations in the device memory. As seen in Section 3.1, 2 recursions are sufficient to get accurate results, so we implemented a PRBT of depth 2. Formula (3) shows that a PRBT of depth 2 involves 5 elementary products of the form $B^T A B'$ (1 product for recursion #1 and 4 products for recursion #2). These 5 products can be computed with only one reading and writing of the matrix A in the device memory. However, due to the too-large number of variables and to the small size of cache memory, an implementation with 2 successive reading and writing of the matrix A (one for each recursion) gives better performance results.

The PRBT solver for hybrid CPU/GPU architectures performs the following tasks.

— We generate the random matrices U and V in packed storage on the CPU.
— The matrix A and the packed representation of U and V are sent from the host memory to the device memory.
— Randomization is performed on the GPU, updating A in the device memory.
— The randomized matrix is factorized with GENP on the GPU, the panel factorization being performed on the CPU host. This routine has been developed for the PRBT solver. Note that, since we know in advance that we are not going to pivot, GENP is implemented as a very efficient fully BLAS 3 algorithm.
— We compute $U^T b$ on the GPU, $A_r y = U^T b$ is solved on the GPU, followed by the solution $x = V y$.
— The solution is sent to the host memory, followed if necessary by iterative refinement.

The GPU is a Fermi Tesla S2050 (1.15 GHz, 2687.4 MB memory) and its multicore host is a 48 cores system (4 sockets x 12 cores) AMD Opteron 6172 (2.1 GHz). On the multicore we use LAPACK and BLAS from MKL 10.2. The PRBT solver is compared with a GEPP solver as it is implemented in the MAGMA 1.0 library. In both cases the multicore host is involved just in the panel factorization, the update of the trailing matrix being performed on the GPU. Figure 3 shows the performance in GFlop/s for both solvers using double precision arithmetic and we observe that PRBT achieves much better performance depending on the size of the matrix. For small problems the gain is much bigger (from 100% for size 1,000 to 33% for size 3,000). In the range 4,000–8,000, the gain obtained by using PRBT is about 20% and for matrix sizes larger than 9,000, the improvement is around 10% showing that asymptotically, the two performances should be close. We point out that these results are obtained using a GEPP implementation specifically tuned for this architecture while PRBT could be still improved by additional tuning and use of a scheduler (e.g., QUARK [YarKhan et al. 2011]). Improvement could also be obtained by taking advantage of the multicore in the
update of the trailing matrix. In this respect, the performance results of PRBT are very promising.

4. CONCLUSION AND FUTURE WORK

We proposed a linear system solver where the LU factorization is performed without pivoting on a matrix randomized by PRBT. We showed that PRBT does not alter the 2-norm condition number of the original matrix and that it requires in practice a low computational cost ($O(n^2)$ operations) and a few additional data storage. We demonstrated that the obtained accuracy is similar to that of GEPP on a reasonable range of matrices. We also gave first performance results on a current hybrid CPU/GPU architecture where the preprocessing due to randomization is performed on the GPU and the LU factorization without pivoting is a hybrid CPU/GPU program. The resulting PRBT solver outperforms the GEPP solver as it is implemented in the MAGMA library. The PRBT method shall be integrated into the MAGMA library jointly with a fully BLAS 3 GENP solver. The latter could be indeed very useful to factorize efficiently matrices for which the growth factor is $O(1)$ and therefore pivoting is not needed (see examples of such classes of matrices in Higham [2002, p. 166]). Further experiments will be performed on multicore architectures which will allow performance comparisons with other solvers (e.g., from the PLASMA2 library) which are not necessarily based on GEPP and enable more extensive testing.

REFERENCES

Accelerating Linear System Solutions Using Randomization Techniques

Parker, D. S. and Pierce, B. 1995. The randomizing FFT: an alternative to pivoting in Gaussian elimination. Tech. rep. CSD-950037, Computer Science Department, UCLA.

Saad, Y. 2000. *Iterative Methods for Sparse Linear Systems* 2nd Ed. SIAM.

Received May 2011; revised November 2011; accepted March 2012